当前位置:初中试题 > 数学试题 > 直线与圆位置关系 > 如图,O是正方形ABCD的对角线BD上一点,⊙O与边AB,BC都相切,点E,F分别在AD,DC上,现将△DEF沿着EF对折,折痕EF与⊙O相切,此时点D恰好落在...
题目
题型:不详难度:来源:
如图,O是正方形ABCD的对角线BD上一点,⊙O与边AB,BC都相切,点E,F分别在AD,DC上,现将△DEF沿着EF对折,折痕EF与⊙O相切,此时点D恰好落在圆心O处.若DE=2,则正方形ABCD的边长是(  )
A.3B.4C.2+


2
D.2


2

答案
如图:延长FO交AB于点G,则点G是切点,
OD交EF于点H,则点H是切点,
∵ABCD是正方形,点O在对角线BD上,
∴DF=DE,OF⊥DC,
∴GF⊥DC,
∴OG⊥AB,
∴OG=OH=HD=HE=AE,且都等于圆的半径.
在等腰直角三角形DEH中,DE=2,
∴EH=DH=


2
=AE.
∴AD=AE+DE=


2
+2.
故选C.
核心考点
试题【如图,O是正方形ABCD的对角线BD上一点,⊙O与边AB,BC都相切,点E,F分别在AD,DC上,现将△DEF沿着EF对折,折痕EF与⊙O相切,此时点D恰好落在】;主要考察你对直线与圆位置关系等知识点的理解。[详细]
举一反三
已知:如图,直线MN和⊙O切于点C,AB是⊙O的直径,AE⊥MN,BF⊥MN且与⊙O交于点G,垂足分别是E、F,AC是⊙O的弦,
(1)求证:AB=AE+BF;
(2)令AE=m,EF=n,BF=p,证明:n2=4mp;
(3)设⊙O的半径为5,AC=6,求以AE、BF的长为根的一元二次方程;
(4)将直线MN向上平行移动至与⊙O相交时,m、n、p之间有什么关系?向下平行移动至与⊙O相离时,m、n、p之间又有什么关系?
题型:不详难度:| 查看答案
如图,已知AB是⊙O的直径,点C在⊙O上,过点C的直线与AB的延长线交于点P,AC=PC,∠COB=2∠PCB.
(1)求证:PC是⊙O的切线;
(2)求∠P的度数;
(3)点M是弧AB的中点,CM交AB于点N,AB=4,求线段BM、CM及弧BC所围成的图形面积.
题型:不详难度:| 查看答案
如图,PA、PB是⊙O的切线,切点为A、B,若OP=4,PA=2


3
,则∠AOB的度数为(  )
A.60°B.90°C.120°D.无法确定

题型:不详难度:| 查看答案
如图,O为正方形ABCD对角线AC上一点,以O为圆心,OA长为半径的⊙0与BC相切于点M,与AB、AD分别相交于点E、F.
(1)求证:CD与⊙0相切;
(2)若⊙0的半径为


2
,求正方形ABCD的边长.
题型:不详难度:| 查看答案
如图,AB是⊙O的直径,AC是⊙O的切线,且AB=AC,则∠C的度数是______度.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.