当前位置:初中试题 > 数学试题 > 直线与圆位置关系 > 已知:如图,直线MN和⊙O切于点C,AB是⊙O的直径,AE⊥MN,BF⊥MN且与⊙O交于点G,垂足分别是E、F,AC是⊙O的弦,(1)求证:AB=AE+BF;(...
题目
题型:不详难度:来源:
已知:如图,直线MN和⊙O切于点C,AB是⊙O的直径,AE⊥MN,BF⊥MN且与⊙O交于点G,垂足分别是E、F,AC是⊙O的弦,
(1)求证:AB=AE+BF;
(2)令AE=m,EF=n,BF=p,证明:n2=4mp;
(3)设⊙O的半径为5,AC=6,求以AE、BF的长为根的一元二次方程;
(4)将直线MN向上平行移动至与⊙O相交时,m、n、p之间有什么关系?向下平行移动至与⊙O相离时,m、n、p之间又有什么关系?
答案
(1)证明:连接OC,
∵AE⊥MN,BF⊥MN,
∴AEBF,而AB≠EF,
∴四边形ABFE为梯形,
∵直线MN和⊙O切于点C,
∴OC⊥MN,
∴OCAEBF,
∴OA=OB,
∴OC为梯形ABFE的中位线,
∴AE+BF=2OC,
即:AB=AE+BF;

(2)证明:连接BC,
∵AB是直径,
∴∠ACB=90°,
∴∠ECA+∠FCB=90°,
∵∠CBF+∠FCB=90°,
∴∠CBF=∠ECA,
∵∠AEC=∠BFC=90°,
∴△AEC△CFB,
∴EC:BF=AE:CF,
∴CF•EC=AE•BF,
∵CF=EC=
1
2
EF,
∴EF2=4AE•BF,
∵AE=m,EF=n,BF=p,
∴n2=4mp;

(3)∵AB=AE+BF,⊙O的半径为5,AC=6,
∴AE+BF=10,BC=


AB2-AC2
=8,
∵△AEC△CFB,
∴AC:BC=EC:BF=6:8=3:4,
∵EC=FC,
∴CF:BF=3:4,
设CF=3x,BF=4x,
则(3x)2+(4x)2=64,
解得:x=
8
5

即BF=
32
5

∴AE=10-
32
5
=
18
5

∴AE•BF=
576
25

∴以AE、BF的长为根的一元二次方程为:x2-
576
25
x+10=0;

(4)由平移的性质,可得:四边形EFF′E′是矩形,
∴E′F′=EF,
∵EF2=4AE•BF,
∴E′F′2=4AE•BF,
∴n2=4mp;
∴将直线MN向上平行移动至与⊙O相交时,m、n、p之间的关系为:n2=4mp;向下平行移动至与⊙O相离时,m、n、p之间的关系为:n2=4mp.
核心考点
试题【已知:如图,直线MN和⊙O切于点C,AB是⊙O的直径,AE⊥MN,BF⊥MN且与⊙O交于点G,垂足分别是E、F,AC是⊙O的弦,(1)求证:AB=AE+BF;(】;主要考察你对直线与圆位置关系等知识点的理解。[详细]
举一反三
如图,已知AB是⊙O的直径,点C在⊙O上,过点C的直线与AB的延长线交于点P,AC=PC,∠COB=2∠PCB.
(1)求证:PC是⊙O的切线;
(2)求∠P的度数;
(3)点M是弧AB的中点,CM交AB于点N,AB=4,求线段BM、CM及弧BC所围成的图形面积.
题型:不详难度:| 查看答案
如图,PA、PB是⊙O的切线,切点为A、B,若OP=4,PA=2


3
,则∠AOB的度数为(  )
A.60°B.90°C.120°D.无法确定

题型:不详难度:| 查看答案
如图,O为正方形ABCD对角线AC上一点,以O为圆心,OA长为半径的⊙0与BC相切于点M,与AB、AD分别相交于点E、F.
(1)求证:CD与⊙0相切;
(2)若⊙0的半径为


2
,求正方形ABCD的边长.
题型:不详难度:| 查看答案
如图,AB是⊙O的直径,AC是⊙O的切线,且AB=AC,则∠C的度数是______度.
题型:不详难度:| 查看答案
如图,已知△ABC是等腰三角形,∠C=90°,AC=BC=


2
,在BC上取一点O,以O为圆心,OC为半径作半圆与AB相切于点E,则⊙O的半径为______.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.