当前位置:初中试题 > 数学试题 > 垂径定理 > 如图所示,已知O是∠EPF的平分线上的一点,以O为圆心的圆与角的两边分别交于点A、B和C、D.(1)求证:PB=PD;(2)若角的顶点P在圆上或圆内,(1)中的...
题目
题型:不详难度:来源:
如图所示,已知O是∠EPF的平分线上的一点,以O为圆心的圆与角的两边分别交于点A、B和C、D.
(1)求证:PB=PD;
(2)若角的顶点P在圆上或圆内,(1)中的结论还成立吗?若不成立,请说明理由;若成立,请加以证明.
答案
(1)证明:过O作OM⊥PB于M,ON⊥PD于N.
∵OP平分∠EPF,
∴OM=ON,又OP=OP,
∴Rt△POM≌Rt△PON(HL),
∴PM=PN,
∴AB=CD,则BM=DN,
∴PM+BM=PN+DN,
∴PB=PD.

(2)上述结论仍成立.如下图所示.
当点P在圆上时,
根据解平分线的性质可知OM=ON,
∴△OPM≌△OPN,
∴PM=PN,
根据垂径定理得AM=PM,CN=PN,
∴AP=CP,
当点P在圆内时,
根据角平分线的性质可知OM=ON,
∴△OPM≌△OPN,
∴PM=PN,
连接OA,OC则△OAM≌△OCN,
∴AM=CN,
∴AP=CP.
核心考点
试题【如图所示,已知O是∠EPF的平分线上的一点,以O为圆心的圆与角的两边分别交于点A、B和C、D.(1)求证:PB=PD;(2)若角的顶点P在圆上或圆内,(1)中的】;主要考察你对垂径定理等知识点的理解。[详细]
举一反三
如图,AB为⊙O的直径,C、D分别为OA、OB的中点,CF⊥AB,DE⊥AB,下列结论:①CF=DE;②弧AF=弧FE=弧EB;③AE=2CF;④四边形CDEF为正方形,其中正确的是(  )
A.①②③B.①②④C.②③④D.①③④

题型:不详难度:| 查看答案
如图为直径是26cm圆柱形油槽,装入油后,油深CD为8cm,那么油面宽度AB=______cm.
题型:不详难度:| 查看答案
如图所示的拱桥,用
AB
表示桥拱.
(1)若
AB
所在圆的圆心为O,EF是弦CD的垂直平分线,请你利用尺规作图,找出圆心O.(不写作法,但要保留作图
痕迹)
(2)若拱桥的跨度(弦AB的长)为16m,拱高(
AB
的中点到弦AB的距离)为4m,求拱桥的半径R.
题型:不详难度:| 查看答案
如图,AB为⊙O的直径,且AB=10,弦MN的长为8,若弦MN的两端在圆周上滑动时,始终与AB相交.设A,B到MN的距离为h1,h2.则|h1-h2|=______.
题型:不详难度:| 查看答案
如图,AB为⊙O的弦,⊙O的半径为5,OC⊥AB于点D,交⊙O于点C,且CD=l,则OD=______,弦AB的长是______.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.