当前位置:初中试题 > 数学试题 > 解三角形 > 如图①,在矩形纸片ABCD中,AB=+1,AD=.(1)如图②,将矩形纸片向上方翻折,使点D恰好落在AB边上的D′处,压平折痕交CD于点E,则折痕AE的长为  ...
题目
题型:不详难度:来源:
如图①,在矩形纸片ABCD中,AB=+1,AD=
(1)如图②,将矩形纸片向上方翻折,使点D恰好落在AB边上的D′处,压平折痕交CD于点E,则折痕AE的长为   
(2)如图③,再将四边形BCED′沿D′E向左翻折,压平后得四边形B′C′ED′,B′C′交AE于点F,则四边形B′FED′的面积为   
(3)如图④,将图②中的△AED′绕点E顺时针旋转α角,得△A′ED″,使得EA′恰好经过顶点B,求弧D′D″的长.(结果保留π)

答案
(1)
(2)
(3)∵∠C=90°,BC=,EC=1,∴。∴∠BEC=60°。
由翻折可知:∠DEA=45°,∴∠AEA′=75°=∠D′ED″。

解析

试题分析:(1)先根据图形反折变换的性质得出AD′,D′E的长,再根据勾股定理求出AE的长即可:
∵△ADE反折后与△AD′E重合,∴AD′=AD=D′E=DE=

(2)由(1)知,AD′=,故可得出BD′的长,根据图形反折变换的性质可得出B′D′的长,再由等腰直角三角形的性质得出B′F的长,根据梯形的面积公式即可得出结论:
∵由(1)知AD′=,∴BD′=1。
∵将四边形BCED′沿D′E向左翻折,压平后得四边形B′C′ED′,∴B′D′=BD′=1。
∵由(1)知AD′=AD=D′E=DE=,∴四边形ADED′是正方形。
∴B′F=AB′=﹣1。
∴S梯形B′FED′=(B′F+D′E)•B′D′=﹣1+)×1=
(3)根据直角三角形的性质求出∠BEC的度数,由翻折变换的性质可得出∠DEA的度数,故可得出∠AEA′=75°=∠D′ED″,由弧长公式即可得出结论。 
核心考点
试题【如图①,在矩形纸片ABCD中,AB=+1,AD=.(1)如图②,将矩形纸片向上方翻折,使点D恰好落在AB边上的D′处,压平折痕交CD于点E,则折痕AE的长为  】;主要考察你对解三角形等知识点的理解。[详细]
举一反三
如图,在直角三角形ABC中,∠C=90°,AC=12,AB=13,则sinB的值等于   

题型:不详难度:| 查看答案
(2013年广东梅州7分)计算:
题型:不详难度:| 查看答案
(2013年广东梅州11分)用如图①,②所示的两个直角三角形(部分边长及角的度数在图中已标出),完成以下两个探究问题:

探究一:将以上两个三角形如图③拼接(BC和ED重合),在BC边上有一动点P.
(1)当点P运动到∠CFB的角平分线上时,连接AP,求线段AP的长;
(2)当点P在运动的过程中出现PA=FC时,求∠PAB的度数.
探究二:如图④,将△DEF的顶点D放在△ABC的BC边上的中点处,并以点D为旋转中心旋转△DEF,使△DEF的两直角边与△ABC的两直角边分别交于M、N两点,连接MN.在旋转△DEF的过程中,△AMN的周长是否存在有最小值?若存在,求出它的最小值;若不存在,请说明理由.
题型:不详难度:| 查看答案
(2013年四川广安5分)计算:
题型:不详难度:| 查看答案
(2013年四川广安8分)如图,广安市防洪指挥部发现渠江边一处长400米,高8米,背水坡的坡角为45°的防洪大堤(横截面为梯形ABCD)急需加固.经调查论证,防洪指挥部专家组制定的加固方案是:背水坡面用土石进行加固,并使上底加宽2米,加固后,背水坡EF的坡比i=1:2.

(1)求加固后坝底增加的宽度AF的长;
(2)求完成这项工程需要土石多少立方米?
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.