当前位置:初中试题 > 数学试题 > 相似三角形性质 > 如图,△ABC中,DE∥BC,如果AD=1,DB=2,那么的值为[     ]A.B.C.D....
题目
题型:广东省期末题难度:来源:
如图,△ABC中,DE∥BC,如果AD=1,DB=2,那么的值为
[     ]
A.
B.
C.
D.
答案
C
核心考点
试题【如图,△ABC中,DE∥BC,如果AD=1,DB=2,那么的值为[     ]A.B.C.D.】;主要考察你对相似三角形性质等知识点的理解。[详细]
举一反三
如图,△ABC中,∠BAC=90°,BG平分∠ABC,GF⊥BC于点F,AD⊥BC于点D,交BG于点E,连接EF.
(1)求证:①AE=AG;②四边形AEFG为菱形.
(2)若AD=8,BD=6,求AE的长.
题型:四川省期末题难度:| 查看答案
如图,在正方形ABCD中,E为AD的中点,F为ED的中点.
求证:∠ABE=∠FBC.
题型:四川省期末题难度:| 查看答案
如图,已知E、F、G分别是△ABC各边的中点,△EBF的面积为2,则△ABC的面积为
[     ]
A.2
B.4
C.6
D.8
题型:广东省期末题难度:| 查看答案
将直角三角形的三边都扩大相同的倍数后,得到的三角形一定是[     ]
A. 直角三角形
B. 锐角三角形
C. 钝角三角形
D. 以上三种情况都有可能
题型:湖北省期末题难度:| 查看答案
操作:在△ABC中,AC=BC=2,∠C=90°,将一块等腰直角三角板的直角顶点放在斜边AB的中点P处,将三角板绕点P旋转,三角板的两直角边分别交射线AC、CB于D、E两点,图1,2,3是旋转三角板得到的图形中的3种情况。
研究:
(1)三角板绕点P旋转,观察线段PD和PE之间有什么数量关系,并结合图2加以证明;
(2)三角板绕点P旋转,△PBE是否能成为等腰三角形?若能,指出所有情况(即写出△PBE为等腰三角形时CE的长);若不能,请说明理由;
(3)若将三角板的直角顶点放在斜边AB上的M处,且AM:MB=1:3,和前面一样操作,试问线段MD和ME之间有什么数量关系?并结合图4加以证明。
题型:湖北省期中题难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.