当前位置:初中试题 > 数学试题 > 正方形 > 如图1,等腰Rt△CEF的斜边CE在正方形ABCD的边BC的延长线上,CF>BC,取线段AE的中点M.(1)求证:MD=MF,MD⊥MF(2)若Rt△CEF绕点...
题目
题型:不详难度:来源:
如图1,等腰Rt△CEF的斜边CE在正方形ABCD的边BC的延长线上,CF>BC,取线段AE的中点M.
(1)求证:MD=MF,MD⊥MF
(2)若Rt△CEF绕点C顺时针旋转任意角度(如图2),其他条件不变.(1)中的结论是否仍然成立,若成立,请证明,若不成立,请说明理由.
答案
(1)证明:如图1,延长DM交CE于点N,
∵M是AE的中点,
∴AM=ME,
∵CE在正方形ABCD的边BC的延长线上,
∴ADCE,
∴∠DAM=∠NEM,
在△ADM与△ENM中,





∠DAM=∠NEM
AM=EM
∠AMD=∠EMN

∴△ADM≌△ENM(ASA),
∴DM=MN,AD=NE,
连接DF、FN,
∵△CEF是等腰直角三角形,
∴∠CEF=∠ECF=45°,CF=EF,
∴∠DCF=90°-∠ECF=90°-45°=45°,
∴∠CEF=∠DCF,
在△CDF与△ENF中,





CD=NE
∠CEF=∠DCF
CF=EF

∴△CDF≌△ENF(SAS),
∴DF=NF,∠CFD=∠EFN,
∵∠CFE=90°,
∴∠DFN=∠CFD+∠CFN=∠EFN+∠CFN=∠CFE=90°,
又∵DM=MN,
∴MD=MF,MD⊥MF(直角三角形斜边上的中线等于斜边的一半,等腰三角形三线合一);

(2)仍然成立.理由如下:
如图2,过点E作EGAD交DC的延长线于点G,延长DM交EG于点N,
∴∠DAM=∠NEM,
∵M是AE的中点,
∴AM=ME,
在△ADM与△ENM中,





∠DAM=∠NEM
AM=EM
∠AMD=∠EMN

∴△ADM≌△ENM(ASA),
∴DM=MN,AD=NE,
连接DF、FN,
∵四边形ABCD是正方形,
∴∠G=∠ADC=90°,
∴∠NEF=360°-90°×2-∠GCF=180°-∠GCF,
∠DCF=180°-∠GCF,
∴∠DCF=∠NEF,
在△CDF与△ENF中,





CD=NE
∠DCF=∠NEF
CF=EF

∴△CDF≌△ENF(SAS),
∴DF=NF,∠CFD=∠EFN,
∵∠CFE=90°,
∴∠DFN=∠CFD+∠CFN=∠EFN+∠CFN=∠CFE=90°,
又∵DM=MN,
∴MD=MF,MD⊥MF(直角三角形斜边上的中线等于斜边的一半,等腰三角形三线合一).
核心考点
试题【如图1,等腰Rt△CEF的斜边CE在正方形ABCD的边BC的延长线上,CF>BC,取线段AE的中点M.(1)求证:MD=MF,MD⊥MF(2)若Rt△CEF绕点】;主要考察你对正方形等知识点的理解。[详细]
举一反三
如图,点C是线段AB上的任意一点(异于点A、B),分别以AC、BC为边在线段AB的两侧作正方形ACDE和BCFG,连接AF、BD.
(1)证明:AF=BD;
(2)当点C位于线段AB何处时,边AF、BD所在直线互相平行?请说明理由.
题型:不详难度:| 查看答案
如图,ABCD与BEFG是并列放在一起的两个正方形.如果正方形ABCD的面积是9平方厘米,CG=2厘米,则正方形BEFG的面积是(  )
A.25平方厘米B.75平方厘米C.50平方厘米D.45平方厘米

题型:不详难度:| 查看答案
如图,一个正方形摆放在桌面上,则正方形的边长为______.
题型:不详难度:| 查看答案
如图所示,正方形ABCD对角线交于O,点O是正方形A′B′C′O的一个顶点,两个正方形的边长都是2,那么正方形A′B′C′O绕O无论怎样转动时,图中两个正方形重叠部分的面积为______.
题型:不详难度:| 查看答案
在△ABC中,∠C=90°,∠A,∠B的平分线交于点D,DE⊥BC于点E,DF⊥AC于点F,求证:四边形CFDE是正方形.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.