当前位置:初中试题 > 数学试题 > 平行四边形性质 > 如图所示,在正方形ABCD的对角线上取点E,使得∠BAE=,连结AE,CE.延长CE到F,连结BF,使得BC=BF.若AB=1,则下列结论:①AE=CE; ②F...
题目
题型:不详难度:来源:
如图所示,在正方形ABCD的对角线上取点E,使得∠BAE=,连结AE,CE.延长CE到F,连结BF,使得BC=BF.若AB=1,则下列结论:①AE=CE; ②F到BC的距离为;③BE+EC=EF;④;⑤.其中正确的个数是
A.2个B.3个 C.4个D.5个

答案
B
解析

试题分析:根据正方形的性质推出AB=BC,∠ABD=∠CBD=45,证△ABE≌△CBE,即可判断①;过F作FH⊥BC于H,根据直角三角形的性质即可求出FH;过A作AM⊥BD交于M,根据勾股定理求出BD,根据三角形的面积公式即可求出高AM,根据三角形的面积公式求出即可.
∵正方形ABCD,
∴AB=BC,∠ABD=∠CBD=45°,
∵BE=BE,
∴△ABE≌△CBE,
∴AE=CE,∴①正确;
过F作FH⊥BC于H,

∵BF=BC=1,
∴∠BFC=∠FCB=15°,
∴FH=BF=,∴②错误;
∵Rt△BHF中,FH=,BF=1,

∵BD是正方形ABCD的对角线,
∴AE=CE,
在EF上取一点N,使BN=BE,

又∠NBE=∠EBC+∠ECB=45°+15°=60°,
∴△NBE为等边三角形,
∴∠ENB=60°,又∠NFB=15°,
∴∠NBF=45°,又∠EBC=45°,
∴∠NBF=∠EBC,又BF=BC,∠NFB=∠ECB=15°,
可证△FBN≌△CBE,
∴NF=EC,
故BE+EC=EN+NF=EF,
∴③正确;
过A作AM⊥BD交于M,
根据勾股定理求出BD=
由面积公式得:AD×AB=BD×AM,解得
∵∠ADB=45°,∠AED=60°,

,∴④错误;

故选B.
点评:本题知识点多,综合性强,是中考常见题,综合运用这些性质进行证明是解此题的关键.
核心考点
试题【如图所示,在正方形ABCD的对角线上取点E,使得∠BAE=,连结AE,CE.延长CE到F,连结BF,使得BC=BF.若AB=1,则下列结论:①AE=CE; ②F】;主要考察你对平行四边形性质等知识点的理解。[详细]
举一反三
如图所示,P是矩形ABCD内的任意一点,连接PA、PB、PC、PD,得到△PAB、△PBC、△PCD、△PDA,设它们的面积分别是S1、S2、S3、S4,给出如下结论:
①S1+S2=S3+S4;②S2+S4=S1+S3;③若S3=2S1,则S4=2S2;④若S1=S2,则P点在矩形的对角线上。
其中正确的结论的序号是_________________(把所有正确结论的序号都填在横线上).
题型:不详难度:| 查看答案
如图,在□ABCD的对角线AC 上取两点E和F,若AE=CF.求证:∠AFD=∠CEB.
题型:不详难度:| 查看答案
下列命题中,真命题是            (    )
A.两条对角线垂直的四边形是菱形B.对角线垂直且相等的四边形是正方形
C.两条对角线相等的四边形是矩形  D.两条对角线相等且互相平分的四边形是矩形

题型:不详难度:| 查看答案
如图,菱形ABCD的两条对角线分别长6和8,点P是对角线AC上的一个动点,点M、N分别是边AB、BC的中点,则PM+PN的最小值是_____________.
题型:不详难度:| 查看答案
把一副三角板如图(1)放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=12cm,DC=14cm,把三角板DCE绕点C逆时针旋转15°得到△(如图2).这时AB与相交于点O,与相交于点F.

(1)填空:∠=     °;
(2)请求出△的内切圆半径;
(3)把△绕着点C逆时针再旋转度()得△,若△为等腰三角形,求的度数(精确到0.1°).
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.