当前位置:初中试题 > 数学试题 > 平行四边形性质 > 已知:如图,在平面直角坐标系O中,矩形OABC的边OA在轴的正半轴上,OC在轴的正半轴上,OA=2,OC=3.过原点O作∠AOC的平分线交AB于点D,连接DC,...
题目
题型:不详难度:来源:
已知:如图,在平面直角坐标系O中,矩形OABC的边OA在轴的正半轴上,OC在轴的正半轴上,OA=2,OC=3.过原点O作∠AOC的平分线交AB于点D,连接DC,过点D作DE⊥DC,交OA于点E.

(1)求过点E、D、C的抛物线的解析式;
(2)将∠EDC绕点D按顺时针方向旋转后,角的一边与轴的正半轴交于点F,另一边与线段OC交于点G.如果DF与(1)中的抛物线交于另一点M,点M的横坐标为,那么EF=2GO是否成立?若成立,请给予证明;若不成立,请说明理由;
(3)对于(2)中的点G,在位于第一象限内的该抛物线上是否存在点Q,使得直线GQ与AB的交点P与点C、G构成的△PCG是等腰三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.
答案
(1);(2)EF=GO成立;(3)Q(2,2)或Q(1,)或Q(
解析

试题分析:(1)已知三点,可用待定系数法求出二次函数解析式;
(2)关键在于正确作出旋转后的图形,结合几何知识,利用数形结合的思想求解;
(3)应当明确△PCG构成等腰三角形有三种情况,逐一讨论求解,要求思维的完备性.
(1)由已知,得C(3,0),D(2,2),
∵∠ADE=90°-∠CDB=∠BCD,
∴AD=BC.AD=2.
∴E(0,1)
设过点E、D、C的抛物线的解析式为y=ax2+bx+c(a≠0).
将点E的坐标代入,得c=1.将c=1和点D、C的坐标分别代入,得


(2)EF=2GO成立.

∵点M在该抛物线上,且它的横坐标为
∴点M的纵坐标为
设DM的解析式为y=kx+b1(k≠0),将点D、M的坐标分别代入

∴DM的解析式为
∴F(0,3),EF=2.
过点D作DK⊥OC于点K,则DA=DK

∵∠ADK=∠FDG=90°,
∴∠FDA=∠GDK.
又∵∠FAD=∠GKD=90°,
∴△DAF≌△DKG.
∴KG=AF=1.
∵OC=3,
∴GO=1.
∴EF=2GO;
(3)∵点P在AB上,G(1,0),C(3,0),
则设P(t,2).
∴PG2=(t-1)2+22,PC2=(3-t)2+22,GC=2.
①PG=PC,则(t-1)2+22=(3-t)2+22
解得t=2.
∴P(2,2),此时点Q与点P重合,
∴Q(2,2).(9分)
②若PG=GC,则(t-1)2+22=22
解得t=1,
∴P(1,2),
此时GP⊥x轴.GP与该抛物线在第一象限内的交点Q的横坐标为1,
∴点Q的纵坐标为
∴Q(1,
③若PC=GC,则(3-t)2+22=22,解得t=3,
∴P(3,2),此时PC=GC=2,△PCG是等腰直角三角形.
过点Q作QH⊥x轴于点H,则QH=GH,设QH=h,
∴Q(h+1,h).

解得h1=,h2=-2(舍去).
∴Q().
综上所述,存在三个满足条件的点Q,即Q(2,2)或Q(1,)或Q().
点评:此类问题综合性强,难度较大,在中考中比较常见,一般作为压轴题,题目比较典型.
核心考点
试题【已知:如图,在平面直角坐标系O中,矩形OABC的边OA在轴的正半轴上,OC在轴的正半轴上,OA=2,OC=3.过原点O作∠AOC的平分线交AB于点D,连接DC,】;主要考察你对平行四边形性质等知识点的理解。[详细]
举一反三
如图,在□ABCD中,分别延长BA、DC到点E、H,使得AE=AB,CH=CD,连接EH,分别交AD,BC于点F、G.求证:△AEF≌△CHG.
题型:不详难度:| 查看答案
在正方形ABCD中,过点A引射线AH,交边CD于点H(点H与点D不重合).通过翻折,使点B落在射线AH上的点G处,折痕AE交BC于E,延长EG交CD于F.
【感知】如图1,当点H与点C重合时,可得FG=FD.

【探究】如图2,当点H为边CD上任意一点时,猜想FG与FD的数量关系,并说明理由.

【应用】在图2中,当AB=5,BE=3时,利用探究结论,求FG的长.
题型:不详难度:| 查看答案
如图,梯形ABCD中,AD∥BC,∠BAD=90°,CE⊥AD于点E,AD=8㎝,BC=4㎝,AB=5㎝.从初始时刻开始,动点P沿着P、Q分别从点A,B同时出发,运动速度均为1㎝/s,动点P沿A—B—C—E的方向运动,到点E停止;动点Q沿B—C—E—D的方向运动,到点D停止,设运动时间为s,△PAQ的面积为2.(这里我们把线段的面积看作是0)

解答下列问题
(1)当=2s时,=      2,当s时,=       2
(2)当5≤≤14时,求之间的函数关系式;
(3)当动点P在线段BC上运动时,求出梯形ABCD的值;
(4)直接写出整个运动过程中,使PQ与四边形ABCE的对角线平行的所有的值.
题型:不详难度:| 查看答案
如图,在矩形ABCD中,AB=9,BC=12,点E是BC中点,点F是边CD上的任意一点,当△AEF的周长最小时,则DF的长为(    )
A.4B.6C.8D.9

题型:不详难度:| 查看答案
如图1,矩形MNPQ中,点E,F,G,H分别在NP,PQ,QM,MN上,若∠1=∠2=∠3=∠4,则称四边形EFGH为矩形MNPQ的反射四边形.图2,图3,图4中,四边形ABCD为矩形,且AB=4,BC=8.


(1)理解与作图:在图2,图3中,点E,F分别在BC,CD边上,试利用正方形网格在图上作出矩形ABCD的反射四边形EFGH.
(2)计算与猜想:求图2,图3中反射四边形EFGH的周长,并猜想矩形ABCD的反射四边形的周长是否为定值?
(3)启发与证明:如图4,为了证明上述猜想,小华同学尝试延长GF交BC的延长线于M,试利用小华同学给我们的启发证明(2)中的猜想.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.