当前位置:初中试题 > 数学试题 > 平行四边形性质 > 矩形ABCD中, 点F在边AD上,过点F作CF⊥EF交AB于点E,AF="CD," 连接BF、CE交于点H,且满足CH=HF+EH.(1)求证:△AFE≌△DC...
题目
题型:不详难度:来源:
矩形ABCD中, 点F在边AD上,过点F作CF⊥EF交AB于点E,AF="CD," 连接BF、CE交于点H,且满足CH=HF+EH.

(1)求证:△AFE≌△DCF.
(2)求证:∠AFE=2∠EFH.)
答案
通过全等三角形的求证规则求证;等边三角形的变换,转化
解析

试题分析:证明:(1)∵CF⊥EF

,且

有知,AF=CD,
∴△AFE≌△DCF(ASA)                              4分
(2) 在矩形ABCD中,有AB=CD

∴AB=AF

在线段CH上截取点M,使HM=HF,连接FM。
∵CH=HF+EH
∴FH=HM
,HM=HF

∴△HFE≌△MFC(AAS)
∴FH=FM
∴FH=FM=HM
∴△HFM为等边三角形



∴∠AFE=2∠EFH    
点评:解答本题的关键是熟练掌握判定两个三角形全等的一般方法:SSS、SAS、ASA、AAS、HL,注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
核心考点
试题【矩形ABCD中, 点F在边AD上,过点F作CF⊥EF交AB于点E,AF="CD," 连接BF、CE交于点H,且满足CH=HF+EH.(1)求证:△AFE≌△DC】;主要考察你对平行四边形性质等知识点的理解。[详细]
举一反三
如图,□ABCD的顶点B在矩形AEFC的边EF上,点B 与点E、F不重合.若的面积为3,则图中阴影部分两个三角形的面积和为         .
题型:不详难度:| 查看答案
如图,在梯形ABCD中,AB∥CD,∠A+∠B=90º,AB=7cm,BC=3cm,AD=4cm,则CD=       cm.
 
题型:不详难度:| 查看答案
如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个钝角为100° 的菱形,剪口与折痕所成的角的度数应为(  )
A.25°或50°B.20°或50°C.40°或50°D.40°或80°

题型:不详难度:| 查看答案
如图,在△ABC中,点E 、D、F分别在边AB、BC、CA上,且DE∥AC,DF∥AB.下列说法中错误的是(       )

A.四边形AEDF是平行四边形
B.如果∠BAC="90" º,那么四边形AEDF是矩形
C.如果AD⊥BC,那么四边形AEDF是正方形
D.如果AD平分∠BAC,那么四边形AEDF是菱形
题型:不详难度:| 查看答案
如图,已知△ABC,按如下步骤作图:①分别以A、C为圆心,以大于的长为半径在AC两边作弧,交于两点M、N;②作直线MN,分别交AB、AC于点D、O;③过C作CE∥AB交MN于点E,连接AE、CD.

(1)求证:四边形ADCE是菱形;
(2)当∠ACB90°,BC6,AB10,求四边形ADCE的面积.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.