当前位置:初中试题 > 数学试题 > 全等三角形的应用 > 四边形一条对角线所在直线上的点,如果到这条对角线的两端点的距离不相等,但到另一对角线的两个端点的距离相等,则称这点为这个四边形的准等距点。如图1,点P为四边形A...
题目
题型:浙江省中考真题难度:来源:
四边形一条对角线所在直线上的点,如果到这条对角线的两端点的距离不相等,但到另一对角线的两个端点的距离相等,则称这点为这个四边形的准等距点。
如图1,点P为四边形ABCD对角线AC所在直线上的一点,PD=PB,PA≠PC,则点P为四边形ABCD的准等距点。

(1)如图2,画出菱形ABCD的一个准等距点;
(2)如图3,作出四边形ABCD的一个准等距点(尺规作图,保留作图痕迹,不要求写作法);
(3)如图4,在四边形ABCD中,P是AC上的点,PA≠PC,延长BP交CD于点E,延长DP交BC于点F,且∠CDF=∠CBE,CE=CF,求证:点P是四边形ABCD的准等距点。
(4)试研究四边形的准等距点个数的情况(说出相应四边形的特征及准等距点的个数,不必证明)。
答案
解:(1)如图2,点P即为所画点

(2)(答案不唯一)如图3,点P即为所作点

(3)连结DB,
在△DCF与△BCE中,
∠DCF=∠BCE,
∠CDF=∠CBE,
CF=CE,
∴△DCF≌△BCE(AAS),
∴CD=CB,
∴∠CDB=∠CBD,
∴∠PDB=∠PBD,
∴PD=PB,
∵PA≠PC,
∴点P是四边形ABCD的准等距点。

(4)①当四边形的对角线互相垂直且任何一条对角线不平分另一对角线或者对角线互相平分且不垂直时,准等距点的个数为0个;
②当四边形的对角线不互相垂直,又不互相平分,且有一条对角线的中垂线经过另一对角线的中点时,准等距点的个数为1个;
③当四边形的对角线既不互相垂直又不互相平分,且任何一条对角线的中垂线都不经过另一条对角线的中点时,准等距点的个数为2个;
④四边形的对角线互相垂直且至少有一条对角线平分另一对角线时,准等距点有无数个。(答案不唯一)
核心考点
试题【四边形一条对角线所在直线上的点,如果到这条对角线的两端点的距离不相等,但到另一对角线的两个端点的距离相等,则称这点为这个四边形的准等距点。如图1,点P为四边形A】;主要考察你对全等三角形的应用等知识点的理解。[详细]
举一反三
已知:如图,四边形ABCD是矩形(AD>AB),点E在BC上,且AE=AD,DF⊥AE,垂足为F,请探求DF与AB有何数量关系?写出你所得到的结论并给予证明。

题型:云南省中考真题难度:| 查看答案
如图,△ABC与△ABD中,AD与BC相交于O点,∠1=∠2,请你添加一个条件(不再添加其它线段,不再标注或使用其他字母),使AC=BD,并给出证明。
你添加的条件是:_______;
证明:_______。

题型:浙江省中考真题难度:| 查看答案
如图,已知∠1=∠2,∠C=∠D,求证:AC=BD。

题型:浙江省中考真题难度:| 查看答案
如图,在平行四边形ABCD中,E为CD的中点,连接AE并延长交BC的延长线于点F,求证:S△ABF=S平行四边形ABCD
题型:中考真题难度:| 查看答案
已知正方形ABCD。

(1)如图1,E是AD上一点,过BE上一点O作BE的垂线,交AB于点G,交CD于点H,求证:BE=GH;(2)如图2,过正方形ABCD内任意一点作两条互相垂直的直线,分别交AD,BC于点E,F,交AB,CD于点G,H,EF与GH相等吗?请写出你的结论;
(3)当点O在正方形ABCD的边上或外部时,过点O作两条互相垂直的直线,被正方形相对的两边(或它们的延长线)截得的两条线段还相等吗?其中一种情形如图3所示,过正方形ABCD外一点O作互相垂直的两条直线m,n,m与AD,BC的延长线分别交于点E,F,n与AB,DC的延长线分别交于点G,H,试就该图形对你的结论加以证明。
题型:山东省中考真题难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.