当前位置:初中试题 > 数学试题 > 二次函数的应用 > 已知抛物线y=-ax2+2ax+b与x轴的一个交点为A(-1,0),与y轴正半轴交于点C。(1)直接写出抛物线的对称轴,及抛物线与轴的另一个交点B的坐标;(2)...
题目
题型:河北省模拟题难度:来源:
已知抛物线y=-ax2+2ax+b与x轴的一个交点为A(-1,0),与y轴正半轴交于点C。
(1)直接写出抛物线的对称轴,及抛物线与轴的另一个交点B的坐标;
(2)当∠ACB=90°时,求抛物线的解析式;
(3)抛物线上是否存在点M,使得△ABM和△ABC的面积相等(△ABM与△ABC重合除外)?若存在,请直接写出点M坐标;若不存在,请说明理由;
(4)在第一象限内,抛物线上是否存在点N,使得△BCN的面积最大?若存在,求出这个最大值和点N坐标;若不存在,请说明理由。
答案
解:(1)对称轴是:直线x=1;点B的坐标是(3,0);
(2)由∠ACB=∠AOC=∠COB=90°,得△AOC∽△COB,

∴CO=
∴b=
当x=-1,y=0时,


(3)点M的坐标是:(2,),(1+,-)或(1-,-);
(4)设点N的坐标为(m,n),则
过点N作ND⊥AB于点D,则有: 





<0,
∴当时,△BCN的面积最大,最大值是,点N的坐标为
核心考点
试题【已知抛物线y=-ax2+2ax+b与x轴的一个交点为A(-1,0),与y轴正半轴交于点C。(1)直接写出抛物线的对称轴,及抛物线与轴的另一个交点B的坐标;(2)】;主要考察你对二次函数的应用等知识点的理解。[详细]
举一反三
如图1,已知抛物线经过坐标原点O和x轴上另一点E,顶点M的坐标为(2,4);矩形ABCD的顶点A与点O重合,AD、AB分别在x轴、y轴上,且AD=2,AB=3。

(1)求该抛物线的函数关系式;
(2)将矩形ABCD以每秒1个单位长度的速度从图1所示的位置沿x轴的正方向匀速平行移动,同时一动点P也以相同的速度从点A出发向B匀速移动,设它们运动的时间为t秒(0≤t≤3),直线AB与该抛物线的交点为N(如图2所示):
①当t=时,判断点P是否在直线ME上,并说明理由;
②设以P、N、C、D为顶点的多边形面积为S,试问S是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由。
题型:河北省模拟题难度:| 查看答案
如图(1)在Rt△ACB中,∠C=90°,AC=4cm,BC=3cm,点P由B出发沿BA方向向点A匀速运动,速度为1 cm/s;点Q由A出发沿AC方向向点C匀速运动,速度为2cm/s;连接PQ。若设运动的时间为t(s)(0<t<2),根据以上信息,解答下列问题:
(1)当t为何值时,以A、P、Q为顶点的三角形与△ABC相似?
(2)设四边形PQCB的面积为y(cm2),直接写出y与t之间的函数关系式;
(3)在点P、点Q的移动过程中,如果将△APQ沿其一边所在直线翻折,翻折后的三角形与△APQ组成一个四边形,那么是否存在某一时刻t,使组成的四边形为菱形?若存在,求出t的值;若不存在,请说明理由。
题型:河北省模拟题难度:| 查看答案
如图,二次函数y=ax2+x+c的图象与x轴交于点A、B两点,且A点坐标为(-2,0),与y轴交于点C(0,3)。
(1)求出这个二次函数的解析式;
(2)直接写出点B的坐标为___________;
(3)在x轴是否存在一点P,使△ACP是等腰三角形?若存在,求出满足条件的P点坐标;若不存在,请说明理由;
(4)在第一象限中的抛物线上是否存在一点Q,使得四边形ABQC的面积最大?若存在,请求出Q点坐标及面积的最大值;若不存在,请说明理由。
题型:河北省模拟题难度:| 查看答案
如图①,Rt△ABC中,∠B=90°,∠CAB=30°,AC⊥x轴,它的顶点A的坐标为(10,0),顶点B的坐标为,点P从点A出发,沿的方向匀速运动,同时点Q从点D(0,2)出发,沿y轴正方向以相同速度运动,当点P到达点C时,两点同时停止运动,设运动的时间为t秒。
(1)求∠BAO的度数;(直接写出结果)
(2)当点P在AB上运动时,△OPQ的面积S与时间t(秒)之间的函数图象为抛物线的一部分(如图②),求点P的运动速度;
(3)求题(2)中面积S与时间t之间的函数关系式,及面积S取最大值时点P的坐标;
(4)如果点P,Q保持题(2)中的速度不变,当t取何值时,PO=PQ,请说明理由。
题型:模拟题难度:| 查看答案
平面直角坐标系中,平行四边形ABOC如图放置,点A、C的坐标分别为(0,3)、(-1,0),将此平行四边形绕点O顺时针旋转90°,得到平行四边形A"B"OC"。
(1)若抛物线过点C,A,A",求此抛物线的解析式;
(2)求平行四边形ABOC和平行四边形A"B"OC"重叠部分△OC"D的周长;
(3)点M是第一象限内抛物线上的一动点,问:点M在何处时△AMA"的面积最大?最大面积是多少?并求出此时M的坐标。
题型:安徽省中考真题难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.