当前位置:初中试题 > 数学试题 > 二次函数的应用 > 张大爷要围成一个矩形花圃,花圃的一边利用足够长的墙,另三边用总长为32米的篱笆恰好围成。围成的花圃是如图所示的矩形ABCD,设AB边的长为x(米),矩形ABCD...
题目
题型:黑龙江省中考真题难度:来源:
张大爷要围成一个矩形花圃,花圃的一边利用足够长的墙,另三边用总长为32米的篱笆恰好围成。围成的花圃是如图所示的矩形ABCD,设AB边的长为x(米),矩形ABCD的面积为S(平方米),求S与x之间的函数关系式(不要求写出自变量x的取值范围);当x为何值时,S有最大值?并求出最大值。(参考公式:二次函数y=ax2+bx+c(a≠0),当x=时, y最大(小)值=
答案
解:由题意得S=AB·BC=x(32-2x),
∴S=-2x2+32x,
∵a=-2<0,
∴S有最大值,

S最大值=
∴当x=8时,S有最大值是128平方米。
核心考点
试题【张大爷要围成一个矩形花圃,花圃的一边利用足够长的墙,另三边用总长为32米的篱笆恰好围成。围成的花圃是如图所示的矩形ABCD,设AB边的长为x(米),矩形ABCD】;主要考察你对二次函数的应用等知识点的理解。[详细]
举一反三
已知:抛物线与直线y=x+3分别交于x轴和y轴上同一点,交点分别是点A和点C,且抛物线的对称轴为直线x=-2。
(1)求出抛物线与x轴的两个交点A、B的坐标。
(2)试确定抛物线的解析式。
(3)观察图象,请直接写出二次函数值小于一次函数值的自变量x的取值范围。
题型:黑龙江省中考真题难度:| 查看答案
如图,抛物线y=x2+bx+c经过A(-1,0),B(4,5)两点,请解答下列问题:
(1)求抛物线的解析式;
(2)若抛物线的顶点为点D,对称轴所在的直线交x轴于点E,连接AD,点F为AD的中点,求出线段EF的长。
注:抛物线y=ax2+bx+c的对称轴是x=-,顶点坐标是(-
题型:黑龙江省中考真题难度:| 查看答案
我市某镇的一种特产由于运输原因,长期只能在当地销售。当地政府对该特产的销售投资收益为:每投入x万元,可获得利润P=-(x-60)2+41(万元),当地政府拟在“十二·五”规划中加快开发该特产的销售,其规划方案为:在规划前后对该项目每年最多可投入100万元的销售投资,在实施规划5年的前两年中,每年都从100万元中拨出50万元用于修建一条公路,两年修成,通车前该特产只能在当地销售;公路通车后的3年中,该特产既在本地销售,也在外地销售,在外地销售的投资收益为:每投入x万元,可获利润Q=-(100-x)2+(100-x)+160(万元)。
(1)若不进行开发,求5年所获利润的最大值是多少?
(2)若按规划实施,求5年所获利润(扣除修路后)的最大值是多少?
(3)根据(1)、(2),该方案是否具有实施价值?
题型:湖北省中考真题难度:| 查看答案
如图所示,过点F(0,1)的直线y=kx+b与抛物线y=x2交于M(x1,y1)和N(x2,y2)两点(其中x1<0,x2<0)。
(1)求b的值;
(2)求x1·x2的值;
(3)分别过M、N作直线l:y=-1的垂线,垂足分别是M1、N1,判断△M1FN1的形状,并证明你的结论;
(4) 对于过点F的任意直线MN,是否存在一条定直线m,使m与以MN为直径的圆相切,如果有,请求出这条直线m的解析式;如果没有,请说明理由。
题型:湖北省中考真题难度:| 查看答案
如图,在平面直角坐标系xoy中,AB在x轴上,AB=10,以AB为直径的⊙O"与y轴正半轴交于点C,连接BC,AC,CD是⊙O"的切线,AD⊥CD于点D,tan∠CAD=,抛物线过A,B,C三点。
(1)求证:∠CAD=∠CAB;
(2)①求抛物线的解析式;
②判断抛物线的顶点E是否在直线CD上,并说明理由;
(3)在抛物线上是否存在一点P,使四边形PBCA是直角梯形,若存在,直接写出点P的坐标(不写求解过程);若不存在,请说明理由。
题型:湖北省中考真题难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.