当前位置:初中试题 > 数学试题 > 二次函数的应用 > 已知抛物线y=ax2+bx+c经过P(,3),E(,0)及原点O(0,0)。(1)求抛物线的解析式;(2)过P点作平行于x轴的直线PC交y轴于C点,在抛物线对称...
题目
题型:辽宁省中考真题难度:来源:
已知抛物线y=ax2+bx+c经过P(,3),E(,0)及原点O(0,0)。
(1)求抛物线的解析式;
(2)过P点作平行于x轴的直线PC交y轴于C点,在抛物线对称轴右侧且位于直线PC下方的抛物线上,任取一点Q,过点Q作直线QA平行于y轴交x轴于A点,交直线PC于B点,直线QA与直线PC及两坐标轴围成矩形OABC(如图),是否存在点Q,使得△OPC与△PQB相似?若存在,求出Q点的坐标;若不存在,请说明理由;
(3)如果符合(2)中的Q点在x轴的上方,连接OQ,矩形OABC内的四个三角形△OPC,△PQB,△OQP,△OQA之间存在怎样的关系,为什么?
答案
解:(1)由已知可得:解之得,
因而得,抛物线的解析式为:
(2)存在.设Q点的坐标为(m,n),则
要使△OCP∽△PBQ,则有,即
解之得,
时,n=2,即为P点,所以得
要使△OCP∽△QPB,则有,即
解之得,
时,即为P点,
时,n=-3,所以得
故存在两个Q点使得△OCP与△PBQ相似;
Q点的坐标为
(3)在Rt△OCP中,因为
所以∠COP=30度,
当Q点的坐标为时,∠BPQ=∠COP=30度,
所以∠OPQ=∠OCP=∠B=∠QAO=90度,
因此,△OPC,△PQB,△OPQ,△OAQ都是直角三角形,
又在Rt△OAQ中,因为,所以∠QOA=30度,
即有∠POQ=∠QOA=∠QPB=∠COP=30度
所以△OPC∽△PQB∽△OQP∽△OQA,
又因为QP⊥OP,QA⊥OA∠POQ=∠AOQ=30°,
所以△OQA≌△OQP。
核心考点
试题【已知抛物线y=ax2+bx+c经过P(,3),E(,0)及原点O(0,0)。(1)求抛物线的解析式;(2)过P点作平行于x轴的直线PC交y轴于C点,在抛物线对称】;主要考察你对二次函数的应用等知识点的理解。[详细]
举一反三
如图①,在边长为8cm正方形ABCD中,E,F是对角线AC上的两个动点,它们分别从点A,点C同时出发,沿对角线以1cm/s同速度运动,过E作EH垂直AC交的直角边于H;过F作FG垂直AC交Rt△ACD的直角边于G,连接HG,EB。设HE,EF,FG,GH围成的图形面积为S1,AE,EB,BA围成的图形面积为S2(这里规定:线段的面积为0),E到达C,F到达A停止,若E的运动时间为xs,解答下列问题:
(1)当0<x<8时,直接写出以E,F,G,H为顶点的四边形是什么四边形,并求x为何值时,S1=S2
(2)①若y是S1与S2的和,求y与x之间的函数关系式。(图②为备用图)
②求y的最大值。
题型:吉林省中考真题难度:| 查看答案
实验与探究:
(1)在图1,2,3中,已知平行四边形ABCD的三个顶点A,B,D的坐标(如图所示),求出图1,2,3中的第四个顶点C的坐标,已求出图1中顶点C的坐标是(5,2),图2,3中顶点C的坐标分别是______,______;
(2)在图4中,平行四边形ABCD的顶点A,B,D的坐标(如图所示),求出顶点C的坐标(C点坐标用含a,b,c,d,e,f的代数式表示);
归纳与发现:
(3)通过对图1,2,3,4的观察和顶点C的坐标的探究,你会发现:无论平行四边形ABCD处于直角坐标系中哪个位置,当其顶点坐标为A(a,b),B(c,d),C(m,n),D(e,f)(如图4)时,则四个顶点的横坐标a,c,m,e之间的等量关系为______;纵坐标b,d,n,f之间的等量关系为______(不必证明);
运用与推广:
(4)在同一直角坐标系中有抛物线y=x2-(5c-3)x-c和三个点,H(2c,0)(其中c>0),问当c为何值时,该抛物线上存在点P,使得以G,S,H,P为顶点的四边形是平行四边形?并求出所有符合条件的P点坐标。
题型:江西省中考真题难度:| 查看答案
连接上海市区到浦东国际机场的磁悬浮轨道全长约为30km,列车走完全程包含启动加速、匀速运行、制动减速三个阶段,已知磁悬浮列车从启动加速到稳定匀速动行共需200秒,在这段时间内记录下下列数据:
题型:江苏中考真题难度:| 查看答案
题型:吉林省中考真题难度:| 查看答案
题型:吉林省中考真题难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.

时间t(秒)

0

50

100

150

200

速度v(米/秒)

0

30

60

90

120

路程x(米)

0

750

3000

6750

12000

如图①,在Rt△ABC中,∠C=90°,边BC的长为20cm,边AC的长为hcm,在此三角形内有一个矩形CFED,点D,E,F分别在AC,AB,BC上,设AD的长为xcm,矩形CFED的面积为y(单位:cm2)。
(1)当h等于30时,求y与x的函数关系式;(不要求写出自变量x的取值范围)
(2)在(1)的条件下,矩形CFED的面积能否为180cm2?请说明理由;
(3)若y与x的函数图象如图②所示,求此时h的值。
(参考公式:二次函数y=ax2+bx+c,当x=-时,y最大(小)值=)。

如图,在平面直角坐标系中,直线y=-x+b(b>0)分别交x轴,y轴于A,B两点,以OA,OB为边作矩形OACB,D为BC的中点,以M(4,0),N(8,0)为斜边端点作等腰直角三角形PMN,点P在第一象限,设矩形OACB与△PMN重叠部分的面积为S。
(1)求点P的坐标;
(2)当b值由小到大变化时,求S与b的函数关系式;
(3)若在直线y=-x+b(b>0)上存在点Q,使∠OQM等于90°,请直接写出b的取值范围;
(4)在b值的变化过程中,若△PCD为等腰三角形,请直接写出所有符合条件的b值。