当前位置:初中试题 > 数学试题 > 二次函数的应用 > 已知,如图,在平面直角坐标系xOy中,抛物线l1的解析式为y=-x2,将抛物线l1平移后得到抛物线l2,若抛物线l2经过点(0,2),且其顶点A的横坐标为最小正...
题目
题型:北京期中题难度:来源:
已知,如图,在平面直角坐标系xOy中,抛物线l1的解析式为y=-x2,将抛物线l1平移后得到抛物线l2,若抛物线l2经过点(0,2),且其顶点A的横坐标为最小正整数。

(1)求抛物线l2的解析式;
(2)说明将抛物线l1如何平移得到抛物线l2
(3)若将抛物线l2沿其对称轴继续上下平移,得到抛物线l3,设抛物线l2的顶点为B,直线OB与抛物线l3的另一个交点为C,当OB=OC时,求点C的坐标。
答案
解:(1)设抛物线l2的解析式为y=-x2+bx+c,
∵点(0,2)在抛物线l2上,
∴y=-x2+bx+2,
∵抛物线l2的顶点的横坐标为1,
∴b=2,
∴l2的解析式为y=-x2+2x+2;
(2)∵y=-x2+2x+2=-(x-1)2+3,
∴将抛物线l1:y=-x2的图象向右平移1个单位长度,
再向上平移3个单位长度,可以得到抛物线l2;(答案不唯一)
(3)设顶点B的坐标为(1,m),则抛物线l3的解析式为y=-(x-1)2+m,
∵OB=OC,且B、O、C三点在同一条直线上,
∴点B与点C关于原点对称,
∴点C的坐标为(-1,-m),
∵点C在抛物线l3上,
∴-m=-(-1-1)2+m,
∴m=2,
∴点C的坐标为(-1,-2)。
核心考点
试题【已知,如图,在平面直角坐标系xOy中,抛物线l1的解析式为y=-x2,将抛物线l1平移后得到抛物线l2,若抛物线l2经过点(0,2),且其顶点A的横坐标为最小正】;主要考察你对二次函数的应用等知识点的理解。[详细]
举一反三
如图,已知平面直角坐标系xOy中,点A(m,6),B(n,1)为两动点,其中0<m<3,连接OA,OB,OA⊥OB。
(1)求证:mn=-6;
(2)当S△AOB=10时,抛物线经过A,B两点且以y轴为对称轴,求抛物线对应的二次函数的关系式;(3)在(2)的条件下,设直线AB交y轴于点F,过点F作直线l交抛物线于P,Q两点,问是否存在直线l,使S△POF:S△QOF=1:3?若存在,求出直线l对应的函数关系式;若不存在,请说明理由。
题型:山东省中考真题难度:| 查看答案
某民俗旅游村为接待游客住宿需要,开设了有100张床位的旅馆,当每张床位每天收费10元时,床位可全部租出,若每张床位每天收费提高2元,则相应的减少了10张床位租出,如果每张床位每天以2元为单位提高收费,为使租出的床位少且租金高,那么每张床位每天最合适的收费是

[     ]

A.14元
B.15元
C.16元
D.18元
题型:山东省中考真题难度:| 查看答案
小明在某次投篮中,球的运动路线是抛物线的一部分,如图所示,若命中篮圈中心,则他与篮底的距离L是

[     ]

A.4.6m
B.4.5m
C.4m
D.3.5m
题型:内蒙古自治区中考真题难度:| 查看答案
如图1,在平面直角坐标系中,点A的坐标为(1,2),点B的坐标为(3,1),二次函数y=x2的图象记为抛物线l1

(1)平移抛物线l1,使平移后的抛物线过点A,但不过点B,写出平移后的一个抛物线的函数表达式:______ (任写一个即可);
(2)平移抛物线l1,使平移后的抛物线过A,B两点,记为抛物线l2,如图2,求抛物线l2的函数表达式;(3)设抛物线l2的顶点为C,K为y轴上一点,若S△ABK=S△ABC,求点K的坐标;
(4)请在图3上用尺规作图的方式探究抛物线l2上是否存在点P,使△ABP为等腰三角形,若存在,请判断点P共有几个可能的位置(保留作图痕迹);若不存在,请说明理由。
题型:山东省中考真题难度:| 查看答案
如图所示,菱形ABCD的边长为6cm,∠DAB=60°,点M是边AD上一点,且DM=2cm,点E、F分别从A、C同时出发,以1cm/s的速度分别沿边AB、CB向点B运动,EM、CD的延长线相交于G,GF交AD于O。设运动时间为x(s),△CGF的面积为y(cm2)。
(1)当x为何值时,GD的长度是2cm?
(2)求y与x之间的函数关系式;
(3)是否存在某一时刻,使得线段GF把菱形ABCD分成的上、下两部分的面积之比为1:5?若存在,求出此时x的值;若不存在,说明理由。
题型:内蒙古自治区中考真题难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.