当前位置:初中试题 > 数学试题 > 二次函数的应用 > 已知抛物线:(1)求抛物线的顶点坐标.(2)将抛物线向右平移2个单位,再向上平移1个单位,得到抛物线,求抛物线的解析式.(3)如下图,抛物线的顶点为P,轴上有一...
题目
题型:福建省中考真题难度:来源:
已知抛物线:
(1)求抛物线的顶点坐标.
(2)将抛物线向右平移2个单位,再向上平移1个单位,得到抛物线,求抛物线的解析式.
(3)如下图,抛物线的顶点为P轴上有一动点M,在这两条抛物线上是否存在点N,使O(原点)、PMN四点构成以OP为一边的平行四边形,若存在,求出N点的坐标;若不存在,请说明理由
[提示:抛物线≠0)的对称轴是顶点坐标是]
答案
解:(1)依题意

∴顶点坐标是(2,2)
(2)根据题意可知
y2解析式中的二次项系数为
且y2的顶点坐标是(4 ,3 )
∴y2=-,即:y2
(3 )符合条件的N点存在
如图:若四边形OPMN为符合条件的平行四边形,则,且

轴于点A轴于点B

则有(AAS)  ∴
∵点P的坐标为(4,3)∴
∵点N在抛物线上,且P点为
的最高点  ∴符合条件的N点只能在轴下方
①点N在抛物线上,则有:
解得:
②点N在抛物线上,则有:
解得:
∴符合条件的N点有四个:
核心考点
试题【已知抛物线:(1)求抛物线的顶点坐标.(2)将抛物线向右平移2个单位,再向上平移1个单位,得到抛物线,求抛物线的解析式.(3)如下图,抛物线的顶点为P,轴上有一】;主要考察你对二次函数的应用等知识点的理解。[详细]
举一反三
已知点A(3,4),点B为直线x=-1上的动点,设B(-1,y).
(1)如图1,若点C(x,0)且-1<x<3,BC⊥AC,求y与x之间的函数关系式;
(2)在(1)的条件下,y是否有最大值?若有,请求出最大值;若没有,请说明理由;
(3)如图2,当点B的坐标为(-1,1)时,在x轴上另取两点E,F,且EF=1.线段EF在x轴上平移,线段EF平移至何处时,四边形ABEF的周长最小?求出此时点E的坐标.
题型:广西自治区中考真题难度:| 查看答案
如图,抛物线与x轴交于A、B两点,与y轴交于C点,且A(-1,0),点M(m,0)是x轴上的一个动点,当MC+MD的值最小时,m的值是
[     ]
(A)    
(B)    
(C)    
(D)
题型:贵州省中考真题难度:| 查看答案
将一根长为16π厘米的细铁丝剪成两段.并把每段铁丝围成圆,设所得两圆半径分别为r1和r2
(1)求r1与r2的关系式,并写出r1的取值范围;
(2)将两圆的面积和S表示成r1的函数关系式,求S的最小值.
题型:黑龙江省中考真题难度:| 查看答案
某商品的进价为每件20元,售价为每件30,每个月可买出180件;如果每件商品的售价每上涨1元,则每个月就会少卖出10件,但每件售价不能高于35元,设每件商品的售价上涨x元(x为整数),每个月的销售利润为x的取值范围为y元。
(1)求y与x的函数关系式,并直接写出自变量x的取值范围;
(2)每件商品的售价为多少元时,每个月可获得最大利润?最大利润是多少?
(3)每件商品的售价定为多少元时,每个月的利润恰好是1920元?
题型:贵州省中考真题难度:| 查看答案
如图,在△ABC中,AB=2,AC=BC= 5 .
(1)以AB所在的直线为x轴,AB的垂直平分线为y轴,建立直角坐标系如图,请你分别写出A、B、C三点的坐标;
(2)求过A、B、C三点且以C为顶点的抛物线的解析式;
(3)若D为抛物线上的一动点,当D点坐标为何值时,S△ABD=S△ABC
(4)如果将(2)中的抛物线向右平移,且与x轴交于点A′B′,与y轴交于点C′,当平移多少个单位时,点C′同时在以A′B′为直径的圆上(解答过程如果有需要时,请参看阅读材料).
附:阅读材料
一元二次方程常用的解法有配方法、公式法和因式分解法,对于一些特殊方程可以通过换元法转化为一元二次方程求解.如解方程:y4-4y2+3=0.
解:令y2=x(x≥0),则原方程变为x2-4x+3=0,解得x1=1,x2=3.
当x1=1时,即y2=1,∴y1=1,y2=-1.
当x2=3,即y2=3,∴y3= ,y4=- .所以,原方程的解是y1=1,y2=-1,y3=
y4=-  ,再如 ,可设 ,用同样的方法也可求解.
题型:广西自治区中考真题难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.