当前位置:初中试题 > 数学试题 > 二次函数的应用 > 如图,抛物线m :y=(x+h )2+k 与x 轴的交点为A 、B ,与y 轴的交点为C ,顶点为M (3,),将抛物线m 绕点B旋转180°,得到新的抛物线n...
题目
题型:中考真题难度:来源:
如图,抛物线m :y=(x+h )2+k 与x 轴的交点为A 、B ,与y 轴的交点为C ,顶点为M (3,),将抛物线m 绕点B旋转180°,得到新的抛物线n,它的顶点为D。
(1)求抛物线n的解析式;
(2)设抛物线n与x 轴的另一个交点为E,点P是线段ED上一个动点(P 不与E 、D 重合),过点P 作y 轴的垂线,垂足为F ,连接EF .如果P 点的坐标为(x ,y ),△PEF的面积为S,求S 与x的函数关系式,写出自变量x 的取值范围,并求出S 的最大值;
(3)设抛物线m 的对称轴与x 轴的交点为G ,以G为圆心,A、B两点间的距离为直径作⊙G ,试判断直线CM与⊙G 的位置关系,并说明理由。
答案

解:(1)∵抛物线m的顶点为
∴m的解析式为

∵抛物线n是由抛物线m绕点B旋转180°得到,
∴D的坐标为
∴抛物线n的解析式为:

(2)∵点E与点A关于点B中心对称,
∴E(18,0),
设直线ED的解析式为y=kx+b,



又点P坐标为(x ,y )


∴当时,S有最大值,
,所以的面积S没有最大值;
(3)∵抛物线m的解析式为,令x=0,得y=4,

∵抛物线m的对称轴与x轴的交点为G,


又AB=10
∴⊙G的半径为5,
∴点C在⊙G上,
过M点作y轴的垂线,垂足为N,



∴直线CM与⊙G相切。

核心考点
试题【如图,抛物线m :y=(x+h )2+k 与x 轴的交点为A 、B ,与y 轴的交点为C ,顶点为M (3,),将抛物线m 绕点B旋转180°,得到新的抛物线n】;主要考察你对二次函数的应用等知识点的理解。[详细]
举一反三
我们常见的炒菜锅和锅盖都是抛物线面,经过锅心和盖心的纵断面是两端抛物线组合而成的封闭图形,不妨简称为“锅线”,锅口直径为6dm,锅深3dm,锅盖高1dm(锅口直径与锅盖直径视为相同),建立直接坐标系如图①所示,如果把锅纵断面的抛物线的记为C1,把锅盖纵断面的抛物线记为C2
(1)求C1和C2的解析式;
(2)如图②,过点B作直线BE:y=x﹣1交C1于点E(﹣2,﹣),连接OE、BC,在x轴上求一点P,使以点P、B、C为顶点的△PBC与△BOE相似,求出P点的坐标;
(3)如果(2)中的直线BE保持不变,抛物线C1或C2上是否存在一点Q,使得△EBQ的面积最大?若存在,求出Q的坐标和△EBQ面积的最大值;若不存在,请说明理由.
题型:中考真题难度:| 查看答案
如图,在平面直角坐标系中,直线y=-2x+42 交x 轴于点A ,交直线y=x 于点B ,抛物线y=ax2-2x+c 分别交线段AB 、OB 于点C 、D ,点C 和点D 的横坐标分别为16 和4 ,点P 在这条抛物线上。
(1)求点C、D的纵坐标;
(2)求a、c的值;
(3)若Q为线段OB上一点,P、Q两点的纵坐标都为5,求线段PQ的长;
(4)若Q为线段OB 或线段AB上一点,PQ⊥x轴,设P、Q两点间的距离为d(d >0 ),点Q的横坐标为m,直接写出d随m 的增大而减小时m的取值范围。[ 参考公式:二次函数y=ax2+bx+c (a ≠0 )图象的顶点坐标为]
题型:中考真题难度:| 查看答案
如图,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分别为边AB、BC的中点,连结DE,点P从点A出发,沿折线AD-DE-EB运动,到点B停止.点P在AD上以cm/s的速度运动,在折线DE-EB上以1cm/s的速度运动.当点P与点A不重合时,过点P作PQ⊥AC于点Q,以PQ为边作正方形PQMN,使点M落在线段AC上.设点P的运动时间为t(s);
(1)当点P在线段DE上运动时,线段DP的长为_______cm,(用含t的代数式表示);
(2)当点N落在AB边上时,求t的值;
(3)当正方形PQMN与△ABC重叠部分图形为五边形时,设五边形的面积为S(cm2),求S与t的函数关系式;
(4)连结CD.当点N于点D重合时,有一点H从点M出发,在线段MN上以2.5cm/s的速度沿M-N-M连续做往返运动,直至点P与点E重合时,点H停止往返运动;当点P在线段EB上运动时,点H始终在线段MN的中点处.直接写出在点P的整个运动过程中,点H落在线段CD上。
题型:中考真题难度:| 查看答案
如图,在平面直角坐标系xOy中,边长为2的正方形OABC的顶点A、C分别在x轴、y轴的正半轴上,二次函数的图象经过B、C两点。
(1)求该二次函数的解析式;
(2)结合函数的图象探索:当y>0时x的取值范围。
题型:中考真题难度:| 查看答案
如图,已知一次函数y1=kx+b图象与x 轴相交于点A,与反比例函数y2=的图象相交于B(-1,5)、C(,d)两点,点P (m ,n )是一次函数y1=kx+b的图象上的动点。
(1)求k、b的值;
(2)设-1<m<,过点P作x轴的平行线与函数y2=的图象相交于点D,试问△PAD的面积是否存在最大值?若存在,请求出面积的最大值及此时点P的坐标;若不存在,请说明理由;
(3)设m=1-a,如果在两个实数m与n之间(不包括m和n)有且只有一个整数,求实数a的取值范围。
题型:中考真题难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.