当前位置:初中试题 > 数学试题 > 二次函数的应用 > 扬州市某服装厂A车间接到生产一批西服的紧急任务,要求必须在12天(含12天)内完成.已知每套西服的成本价为800元,该车间平时每天能生产西服20套.为了加快进度...
题目
题型:不详难度:来源:
扬州市某服装厂A车间接到生产一批西服的紧急任务,要求必须在12天(含12天)内完成.已知每套西服的成本价为800元,该车间平时每天能生产西服20套.为了加快进度,车间采取工人分批日夜加班,机器满负荷运转的生产方式,生产效率得到了提高.这样,第一天生产了22套,以后每天生产的西服都比前一天多2套.但是由于机器损耗等原因,当每天生产的西服数达到30套后,每增加1套西服,当天生产的所有西服平均每套的成本就增加20元.设该车间第x天生产的西服数为y套.
(1)直接写出y与x之间的函数关系式,并写出自变量x的取值范围;
(2)若这批西服的订购价格为每套1200元,设该车间每天的利润为W元,试求出W与x之间的函数关系式,并求出该车间获得最高利润的那一天的利润是多少元?
答案
(1)∵第一天生产22=20+2×1套;
第二天生产24=20+2×2套;
第三天生产26=20+2×3;
…,
∴设该车间第x天生产的西服数为y=20+2x(1≤x≤12);

(2)当1≤x≤5时,W=×(2x+20)=800x+8000,
此时W随着x的增大而增大,
∴当x=5时,W最大值=12000;
当5<x≤12时,
W=[1200-800-20×(2x+20-30)]×(2x+20)
=-80(x-2.5)2+12500,
此时函数图象开口向下,在对称右侧,W随着x的增大而减小,又天数x为整数,
∴当x=6时,W最大值=11520元.
∵12000>11520,
∴当x=5时,W最大,且W最大值=12000元.
综上所述:该车间获得最高利润的那一天的利润是12000元.
核心考点
试题【扬州市某服装厂A车间接到生产一批西服的紧急任务,要求必须在12天(含12天)内完成.已知每套西服的成本价为800元,该车间平时每天能生产西服20套.为了加快进度】;主要考察你对二次函数的应用等知识点的理解。[详细]
举一反三
在创新素质实践行活动中,某校三位学生参与了超市某种水果的销售调查工作,已知该水果的进价为8元/千克,经试销发现,每天的销售量y(千克)与销售单价x(元/千克)之间的关系可近似的看做一次函数:y=-50x+800.
(1)设超市每天该水果的利润是W(元),写出W与x之间的函数关系式;
(2)小明说超市该水果每天的最大利润是780元,请通过计算说明他的说法对吗?
(3)如果要使该水果每天的利润不低于600元,销售单价应该在什么范围内?
题型:硚口区模拟难度:| 查看答案
在某次数字变换游戏中,我们把整数0,1,2,…,100称为“旧数”,游戏的变换规则是:将旧数先平方,再除以100,所得到的数称为“新数”. 例如:旧数26的新数为262÷100=6.76
(1)经过上述规则变换后,有人断言:“按照上述变换规则,所有的新数都小于它的旧数.”你认为这种说法对吗?请说明理由,若不对,请举一反例说明.
(2)请求出按照上述规则变换后减小了最多的旧数(要写出解答过程).
题型:海沧区质检难度:| 查看答案
抛物线y=-x2+5x+n经过点A(1,0),与y轴交于点B.
(1)求抛物线的解析式;
(2)求点B的坐标.
题型:不详难度:| 查看答案
某商场将进价为2600元的彩电以3000元售出,平均每天能销售出6台.为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种彩电的售价每降低50元,平均每天就能多售出3台.
(1)商场要想在这种彩电销售中每天盈利3600元,同时又要使百姓得到最大实惠,每台彩电应降价多少元?
(2)每台彩电降价多少元时,商场每天销售这种彩电的利润最高?最高利润是多少?
题型:不详难度:| 查看答案
枇杷是莆田名果之一,某果园有100棵枇杷树.每棵平均产量为40千克,现准备多种一些枇杷树以提高产量,但是如果多种树,那么树与树之间的距离和每一棵数接受的阳光就会减少,根据实践经验,每多种一棵树,投产后果园中所有的枇杷树平均每棵就会减少产量0.25千克,问:增种多少棵枇杷树,投产后可以使果园枇杷的总产量最多?最多总产量是多少千克?
题型:莆田难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.