当前位置:初中试题 > 数学试题 > 二次函数的应用 > 已知抛物线与x轴交于点A(-2,0),B(4,0),与y轴交于点C(0,8).求抛物线的解析式及其顶点D的坐标....
题目
题型:不详难度:来源:
已知抛物线与x轴交于点A(-2,0),B(4,0),与y轴交于点C(0,8).求抛物线的解析式及其顶点D的坐标.
答案
设抛物线解析式为y=a(x+2)(x-4),
把C(0,8)代入得a=-1.
所以抛物线的解析式为y=-x2+2x+8
又∵y=-x2+2x+8=-(x-1)2+9,
∴顶点D(1,9)
核心考点
试题【已知抛物线与x轴交于点A(-2,0),B(4,0),与y轴交于点C(0,8).求抛物线的解析式及其顶点D的坐标.】;主要考察你对二次函数的应用等知识点的理解。[详细]
举一反三
某商店按进货价每件6元购进一批货,零售价为8元时,可以卖出100件,如果零售价高于8元,那么一件也卖不出去,零售价从8元每降低0.1元,可以多卖出10件.设零售价定为x元(6≤x≤8).
(1)这时比零售为8元可以多卖出几件?
(2)这时可以卖出多少件?
(3)这时所获利润y(元)与零售价x(元)的关系式怎样?
(4)为零售价定为多少时,所获利润最大?最大利润是多少?
题型:不详难度:| 查看答案
凯里市某大型酒店有包房100间,在每天晚餐营业时间,每间包房收包房费100元时,包房便可全部租出;若每间包房收费提高20元,则减少10间包房租出,若每间包房收费再提高20元,则再减少10间包房租出,以每次提高20元的这种方法变化下去.
(1)设每间包房收费提高x(元),则每间包房的收入为y1(元),但会减少y2间包房租出,请分别写出y1,y2与x之间的函数关系式.
(2)为了投资少而利润大,每间包房提高x(元)后,设酒店老板每天晚餐包房总收入为y(元),请写出y与x之间的函数关系式,求出每间包房每天晚餐应提高多少元可获得最大包房费收入,并说明理由.
题型:黔东南州难度:| 查看答案
已知函数y=(k-2)xk2-4k+5是关于x的二次函数,求:
(1)满足条件的k的值;
(2)当K为何值时,抛物线有最高点?求出这个最高点,这时,x为何值时,y随x的增大而增大?
(3)当k为何值时,函数有最小值?最小值是多少?这时,当x为何值时,y与x的增加而减小?
题型:不详难度:| 查看答案
我州有一种可食用的野生菌,上市时,外商李经理按市场价格30元/千克收购了这种野生菌1000千克存放入冷库中,据预测,该野生菌的市场价格将以每天每千克上涨1元;但冷冻存放这批野生菌时每天需要支出各种费用合计310元,而且这类野生菌在冷库中最多保存160天,同时,平均每天有3千克的野生菌损坏不能出售.
(1)设x天后每千克该野生菌的市场价格为y元,试写出y与x之间的函数关系式.
(2)若存放x天后,将这批野生菌一次性出售,设这批野生菌的销售总额为P元,试写出P与x之间的函数关系式.
(3)李经理将这批野生茵存放多少天后出售可获得最大利润W元?
(利润=销售总额-收购成本-各种费用)
题型:凉山州难度:| 查看答案
请写出一个二次函数,此二次函数具备顶点在x轴上,且过点(0,1)两个条件,并说明你的理由.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.