当前位置:初中试题 > 数学试题 > 二次函数的应用 > 如图,抛物线y=33x2+233x-3交x轴于A、B两点,交y轴于点C,顶点为D.(1)求点A、B、C的坐标;(2)把△ABC绕AB的中点M旋转180°,得到四...
题目
题型:不详难度:来源:
如图,抛物线y=


3
3
x2+
2
3


3
x-


3
交x轴于A、B两点,交y轴于点C,顶点为D.
(1)求点A、B、C的坐标;
(2)把△ABC绕AB的中点M旋转180°,得到四边形AEBC,求E点的坐标;
(3)试判断四边形AEBC的形状,并说明理由.
答案
(1)当y=0时,


3
3
x2+
2
3


3
x-


3
=0

解得:x1=1,x2=-3,
∴A(-3,0),B(1,0),
当x=0时,
y=-


3

∴C(0,-


3
),
∴A(-3,0),B(1,0),C(0,-


3
);

(2)由(1)可知AO=3,BO=1,CO=


3

作EF⊥AB于F,
∠AFE=∠COB=90°,
∵△ABE是由△ABC旋转180°得到的.
∴AE=BC,∠BAE=∠ABD,
∴△AFE≌△BOC,
∴EF=OC,AF=OB,
∴EF=


3
,AF=1,
∴OF=2,
∴E(-2,


3
);

(3)四边形AEBC是矩形.
证明:在Rt△AOC和Rt△BOC中,由勾股定理得:
AC=


32+(


3
)2
,BC=


12+(


3
)
2

∴AC=2


3
,BC=2,
∴AC2=12,BC2=4,
∴AC2+BC2=16,
∵AB2=16,
∴AC2+BC2=AB2
∴∠ACB=90°,
∵四边形AEBC是由三角形ABC绕AB的中点M旋转180°得到的,
∴四边形AEBC是平行四边形,
∵∠ACB=90°,
∴四边形AEBC是矩形.
核心考点
试题【如图,抛物线y=33x2+233x-3交x轴于A、B两点,交y轴于点C,顶点为D.(1)求点A、B、C的坐标;(2)把△ABC绕AB的中点M旋转180°,得到四】;主要考察你对二次函数的应用等知识点的理解。[详细]
举一反三
如图,在矩形ABCD中,AB=2


2
,AD=1.点P在AC上,PQ⊥BP,交CD于Q,PE⊥CD,交于CD于E.点P从A点(不含A)沿AC方向移动,直到使点Q与点C重合为止.
(1)设AP=x,△PQE的面积为S.请写出S关于x的函数解析式,并确定x的取值范围.
(2)点P在运动过程中,△PQE的面积是否有最大值?若有,请求出最大值及此时AP的取值;若无,请说明理由.
题型:不详难度:| 查看答案
用12m长的栅栏围成一个中间被隔断的鸭舍(栅栏占地面积忽略不计).

(1)如图1,当AB=______m,BC=______m时,所围成两间鸭舍的面积最大,最大值为______m2
(2)如图2,若现有一面长4m的墙可以利用,其余三方及隔断使用栅栏,所围成两间鸭舍面积和的最大值是多少______.
题型:不详难度:| 查看答案
如图,抛物线y=ax2+bx-4与x轴交于A(-4,0)、B(3,0)两点,与y轴交于点C.

(1)求抛物线的函数关系式;
(2)点P是抛物上第三象限内的一动点,当点P运动到什么位置时,四边形ABCP的面积最大?求出此时点P的坐标和四边形ABCP的面积;
(3)点M在抛物线对称轴上,点N是平面内一点,是否存在这样的点M、N,使得以点M、N、B、C为顶点的四边形是菱形?若存在,请直接写出点M的坐标;若不存在,请说明理由.
题型:不详难度:| 查看答案
如图,抛物线y=x2-2x+k与x轴交于A、B两点,与y轴交于点C(0,-3).
(1)k=______,点A的坐标为______,点B的坐标为______;
(2)设抛物线y=x2-2x+k的顶点为M,求四边形ABMC的面积;
(3)在直线BC下方的抛物线上是否存在一点D,使四边形ABDC的面积最大?若存在,请求出点D的坐标;若不存在,请说明理由;
(4)设经过点A、B、C三点的圆是⊙P,请直接写出:它的半径长为______,圆心P的坐标为______.
题型:不详难度:| 查看答案
如图,平面直角坐标系中,点A、B、C在x轴上,点D、E在y轴上,OA=OD=2,OC=OE=4,B为线段OA的中点,直线AD与经过B、E、C三点的抛物线交于F、G两点,与其对称轴交于M,点P为线段FG上一个动点(与F、G不重合),PQy轴与抛物线交于点Q.
(1)求经过B、E、C三点的抛物线的解析式;
(2)判断△BDC的形状,并给出证明;当P在什么位置时,以P、O、C为顶点的三角形是等腰三角形,并求出此时点P的坐标;
(3)若抛物线的顶点为N,连接QN,探究四边形PMNQ的形状:①能否成为菱形;②能否成为等腰梯形?若能,请直接写出点P的坐标;若不能,请说明理由.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.