当前位置:初中试题 > 数学试题 > 二次函数的应用 > 如图,矩形OABC的两边在坐标轴上,且A(0,-2),AB=4,连接AC,抛物线y=x2+bx+c经过A,B两点.点P由点A出发以每秒1个单位的速度沿AB边向点...
题目
题型:不详难度:来源:
如图,矩形OABC的两边在坐标轴上,且A(0,-2),AB=4,连接AC,抛物线y=x2+bx+c经过A,B两点.点P由点A出发以每秒1个单位的速度沿AB边向点B移动,1秒后点Q也由点A出发以每秒7个单位的速度沿AO,OC,CB边向点B移动,当其中一个点到达终点时另一个点也停止移动.
(1)求抛物线的解析式;
(2)当P运动到OC上时,设点P的移动时间为t秒,当PQ⊥AC时,求t的值;
(3)当PQAC时,对于抛物线对称轴上一点H,∠HOQ>∠POQ,求点H的纵坐标的取值范围.
答案
(1)∵矩形OABC的两边在坐标轴上,且A(0,-2),AB=4,
∴B点坐标为:(4,-2),
∴将A,B两点代入y=x2+bx+c得:





c=-2
16+4b+c=-2

解得:





b=-4
c=-2

∴抛物线解析式为:y=x2-4x-2;

(2)由题意知:A点移动路程为AP=t,
Q点移动路程为7(t-1)=7t-7.
当Q点在OA上时,即0≤7t-7<2,1≤t<
9
7
时,
如图1,若PQ⊥AC,则有Rt△QAPRt△ABC.
QA
AB
=
AP
BC
,即
7t-7
4
=
t
2

∴t=
7
5

7
5
9
7

∴此时t值不合题意.
当Q点在OC上时,即2≤7t-7<6,
9
7
≤t<
13
7
时,
如图2,过Q点作QD⊥AB.
∴AD=OQ=7(t-1)-2=7t-9.
∴DP=t-(7t-9)=9-6t.
若PQ⊥AC,易证Rt△QDPRt△ABC,
QD
AB
=
DP
BC
,即
2
4
=
9-6t
2

∴t=
4
3

9
7
4
3
13
7

∴t=
4
3
符合题意.
当Q点在BC上时,即6≤7t-7≤8,
13
7
≤t≤
15
7
时,
如图3,若PQ⊥AC,过Q点作QGAC,
则QG⊥PG,即∠GQP=90°.
∴∠QPB>90°,这与△QPB的内角和为180°矛盾,
此时PQ不与AC垂直.
综上所述,当t=
4
3
时,有PQ⊥AC.

(3)当PQAC时,如图4,△BPQ△BAC,
BP
BA
=
BQ
BC

4-t
4
=
8-7(t-1)
2

解得t=2,即当t=2时,PQAC.
此时AP=2,BQ=CQ=1,
∴P(2,-2),Q(4,-1).
抛物线对称轴的解析式为x=2,
当H1为对称轴与OP的交点时,
有∠H1OQ=∠POQ,
∴当yH<-2时,∠HOQ>∠POQ.
作P点关于OQ的对称点P′,连接PP′交OQ于点M,
过P′作P′N垂直于对称轴,垂足为N,连接OP′,
在Rt△OCQ中,∵OC=4,CQ=1.
∴OQ=


17

∵S△OPQ=S四边形ABCO-S△AOP-S△COQ-S△QBP=3=
1
2
OQ×PM,
∴PM=
6


17
17

∴PP′=2PM=
12


17
17

∵∠NPP′=∠COQ.
∴△COQ△NPP′
CQ
OQ
=
P′N
PP′

∴P′N=
12
17
,PN=
48
17

∴P′(
46
17
14
17
),
∴直线OP′的解析式为y=
7
23
x,
∴OP′与NP的交点H2(2,
14
23
).
∴当yH
14
23
时,∠HOP>∠POQ.
综上所述,当yH<-2或yH
14
23
时,∠HOQ>∠POQ.
核心考点
试题【如图,矩形OABC的两边在坐标轴上,且A(0,-2),AB=4,连接AC,抛物线y=x2+bx+c经过A,B两点.点P由点A出发以每秒1个单位的速度沿AB边向点】;主要考察你对二次函数的应用等知识点的理解。[详细]
举一反三
如图,在平面直角坐标系xOy中,已知矩形OACB的边OA,OB分别在x轴上和y轴上,线段OA,OB的长分别是一元二次方程x2-18x+72=0的两个根,且OA>OB;点P从点O开始沿OA边匀速移动,点M从点B开始沿BO边匀速移动.如果点P,点M同时出发,它们移动的速度相同,设OP=x(0≤x≤6),设△POM的面积为y.
(1)求y与x的函数关系式;
(2)连接矩形的对角线AB,当x为何值时,以P,O,M为顶点的三角形与△AOB相似;
(3)当△POM的面积最大时,将△POM沿PM所在直线翻折后得到△PDM,试判断D点是否在矩形的对角线AB上,请说明理由.
题型:不详难度:| 查看答案
如图,已知抛物线与x轴交于A(m,0)、B(n,0)两点,与y轴交于点C(0,3),点P是抛物线的顶点,若m-n=-2,m•n=3.
(1)求抛物线的表达式及P点的坐标;
(2)求△ACP的面积S△ACP
题型:不详难度:| 查看答案
如图,在平面直角坐标系xOy中,把矩形COAB绕点C顺时针旋转α角,得到矩形CFED.设FC与AB交于点H,且A(0,4),C(6,0)(如图1).
(1)当α=60°时,△CBD的形状是______;
(2)当AH=HC时,求直线FC的解析式;
(3)当α=90°时,(如图2).请探究:经过点D,且以点B为顶点的抛物线,是否经过矩形CFED的对称中心M,并说明理由.
题型:不详难度:| 查看答案
如图1,在锐角△ABC中,BC=9,AH⊥BC于点H,且AH=6,点D为AB边上的任意一点,过点D作DEBC,交AC于点E.设△ADE的高AF为x(0<x<6),以DE为折线将△ADE翻折,所得的△A"DE与梯形DBCE重叠部分的面积记为y(点A关于DE的对称点A"落在AH所在的直线上).
(1)分别求出当0<x≤3与3<x<6时,y与x的函数关系式;
(2)当x取何值时,y的值最大,最大值是多少?
题型:不详难度:| 查看答案
如图,在直角坐标系中,以AB为直径的⊙C交x轴于A,交y轴于B,满足OA:OB=4:3,以OC为直径作⊙D,设⊙D的半径为2.
(1)求⊙C的圆心坐标;
(2)过C作⊙D的切线EF交x轴于E,交y轴于F,求直线EF的解析式;
(3)抛物线y=ax2+bx+c(a≠0)的对称轴过C点,顶点在⊙C上,与y轴交点为B,求抛物线的解析式.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.