当前位置:初中试题 > 数学试题 > 二次函数的应用 > 用长度为20m的金属材料制成如图所示的金属框,下部为矩形,上部为等腰直角三角形,其斜边长为2xm.当该金属框围成的图形面积最大时,图形中矩形的相邻两边长各为多少...
题目
题型:不详难度:来源:
用长度为20m的金属材料制成如图所示的金属框,下部为矩形,上部为等腰直角三角形,其斜边长为2xm.当该金属框围成的图形面积最大时,图形中矩形的相邻两边长各为多少?请求出金属框围成的图形的最大面积.
答案
根据题意可得,等腰直角三角形直角边长为


2
x
m,矩形的一边长为2xm,
其相邻边长为
20-(4+2


2
)x
2
=[10-(2+


2
)x
]m,
∴该金属框围成的面积S=2x[10-(2+


2
)x]
+
1
2
×


2
x•


2
x
=-(3+2


2
)x2+20x
0<x<10-5


2

当x=-
b
2a
=
10
3+2


2
=30-20


2
时,金属围成的面积最大,
此时斜边长2x=(60-40


2
)m,
相邻边长为10-(2+


2
•10(3-2


2
)
=(10


2
-10
)m,
S最大=100(3-2


2
)=(300-200


2
)m2
答:矩形的相邻两边长各为(60-40


2
)m,(10


2
-10)m,金属框围成的图形的最大面积为:(300-200


2
)m 2
核心考点
试题【用长度为20m的金属材料制成如图所示的金属框,下部为矩形,上部为等腰直角三角形,其斜边长为2xm.当该金属框围成的图形面积最大时,图形中矩形的相邻两边长各为多少】;主要考察你对二次函数的应用等知识点的理解。[详细]
举一反三
在直角坐标平面中,O为坐标原点,二次函数y=x2+bx+c的图象与x轴的负半轴相交于点C(如图),点C的坐标为(0,-3),且BO=CO
(1)求这个二次函数的解析式;
(2)设这个二次函数的图象的顶点为M,求AM的长.
题型:不详难度:| 查看答案
如图(1),抛物线y=ax2-3ax+b经过A(-1,0),C(3,-4)两点,与y轴交于点D,与x轴交于另一点B.
(1)求此抛物线的解析式;
(2)若直线L:y=kx+1(k≠0)将四边形ABCD的面积分成相等的两部分,求直线L的解析式;
(3)如图(2),过点E(1,1)作EF⊥x轴于点F,将△AEF绕平面内某点旋转180°后得△MNT(点M、N、T分别与点A,E,F对应),使点M,N在抛物线上,求点M,N的坐标.
题型:不详难度:| 查看答案
某塑料大棚的截面如图所示,曲线部分近似看作抛物线.现测得AB=6米,最高点D到地面AB的距离DO=2.5米,点O到墙BC的距离OB=1米.借助图中的直角坐标系,回答下列问题:
(1)写出点A,B的坐标;
(2)求墙高BC.
题型:不详难度:| 查看答案
如图,在平面直角坐标系中,O是坐标原点,点A、B的坐标分别为A(0,4)和B(-2,0),连接AB.
(1)现将△AOB绕点A按逆时针方向旋转90°得到△AO1B1,请画出△AO1B1,并直接写出点B1、O1的坐标(注:不要求证明);
(2)求经过B、A、O1三点的抛物线对应的函数关系式,并画出抛物线的略图.
题型:不详难度:| 查看答案
如图,已知平面直角坐标系xOy中,点A(m,6),B(n,1)为两动点,其中0<m<3,连接OA,OB,OA⊥OB.
(1)求证:mn=-6;
(2)当S△AOB=10时,抛物线经过A,B两点且以y轴为对称轴,求抛物线对应的二次函数的关系式;
(3)在(2)的条件下,设直线AB交y轴于点F,过点F作直线l交抛物线于P,Q两点,问是否存在直线l,使S△POF:S△QOF=1:3?若存在,求出直线l对应的函数关系式;若不存在,请说明理由.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.