当前位置:初中试题 > 数学试题 > 二次函数的应用 > 在平面直角坐标系xOy中,抛物线y=x2+bx+c与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,点B的坐标为(3,0),将直线y=kx沿y轴向上平移...
题目
题型:不详难度:来源:
在平面直角坐标系xOy中,抛物线y=x2+bx+c与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,点B的坐标为(3,0),将直线y=kx沿y轴向上平移3个单位长度后恰好经过B,C两点.
(1)求直线BC及抛物线的解析式;
(2)设抛物线的顶点为D,点P在抛物线的对称轴上,且∠APD=∠ACB,求点P的坐标;
(3)连接CD,求∠OCA与∠OCD两角和的度数.
答案
(1)∵y=kx沿y轴向上平移3个单位长度后经过y轴上的点C,
∴C(0,3).
设直线BC的解析式为y=kx+3.
∵B(3,0)在直线BC上,
∴3k+3=0.
解得k=-1.
∴直线BC的解析式为y=-x+3.(1分)
∵抛物线y=x2+bx+c过点B,C,





9+3b+c=0
c=3

解得





b=-4
c=3

∴抛物线的解析式为y=x2-4x+3.(2分)

(2)由y=x2-4x+3.
可得D(2,-1),A(1,0).
∴OB=3,OC=3,OA=1,AB=2.
可得△OBC是等腰直角三角形,
∴∠OBC=45°,CB=3


2

如图1,设抛物线对称轴与x轴交于点F,
∴AF=
1
2
AB=1.
过点A作AE⊥BC于点E.
∴∠AEB=90度.
可得BE=AE=


2
,CE=2


2

在△AEC与△AFP中,∠AEC=∠AFP=90°,∠ACE=∠APF,
∴△AEC△AFP.
AE
AF
=
CE
PF


2
1
=
2


2
PF

解得PF=2.∵点P在抛物线的对称轴上,
∴点P的坐标为(2,2)或(2,-2).(5分)

(3)解法一:
如图2,作点A(1,0)关于y轴的对称点A",则A"(-1,0).
连接A"C,A"D,
可得A"C=AC=


10
,∠OCA"=∠OCA.
由勾股定理可得CD2=20,A"D2=10.
又∵A"C2=10,
∴A"D2+A"C2=CD2
∴△A"DC是等腰直角三角形,∠CA"D=90°,
∴∠DCA"=45度.
∴∠OCA"+∠OCD=45度.
∴∠OCA+∠OCD=45度.
即∠OCA与∠OCD两角和的度数为45度.(7分)
解法二:
如图3,连接BD.
同解法一可得CD=


20
,AC=


10

在Rt△DBF中,∠DFB=90°,BF=DF=1,
∴DB=


DF2+BF2
=


2

在△CBD和△COA中,
DB
AO
=


2
1
=


2
BC
OC
=
3


2
3
=


2
CD
CA
=


20


10
=


2

DB
AO
=
BC
OC
=
CD
CA

∴△CBD△COA.
∴∠BCD=∠OCA.
∵∠OCB=45°,
∴∠OCA+∠OCD=45度.
即∠OCA与∠OCD两角和的度数为45度.(9分)
核心考点
试题【在平面直角坐标系xOy中,抛物线y=x2+bx+c与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,点B的坐标为(3,0),将直线y=kx沿y轴向上平移】;主要考察你对二次函数的应用等知识点的理解。[详细]
举一反三
如图,已知矩形ABCD的边长AB=2,BC=3,点P是AD边上的一动点(P异于A、D),Q是BC边上的任意一点.连AQ、DQ,过P作PEDQ交AQ于E,作PFAQ交DQ于F.
(1)求证:△APE△ADQ;
(2)设AP的长为x,试求△PEF的面积S△PEF关于x的函数关系式,并求当P在何处时,S△PEF取得最大值,最大值为多少?
(3)当Q在何处时,△ADQ的周长最小?(须给出确定Q在何处的过程或方法,不必给出证明)
题型:不详难度:| 查看答案
山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克.若该专卖店销售这种核桃要想平均每天获利2240元,请回答:
(1)若该专卖店销售这种核桃要想平均每天获利2240元,每千克核桃应降价多少元?
(2)在(1)问的条件下,平均每天获利不变,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?
(3)写出每天总利润y与降价x元的函数关系式,为了使每天的利润最大,应降价多少元?
题型:不详难度:| 查看答案
如图,Rt△AOB是一张放在平面直角坐标系中的三角形纸片,点O与原点重合,点A在x轴上,点B在y轴上OB=


3
,∠BAO=30°,将Rt△AOB折叠,使OB边落在AB边上,点O与点D重合,折痕为BE.
(1)求点E和点D的坐标;
(2)求经过O、D、A三点的二次函数解析式;
(3)设直线BE与(2)中二次函数图象的对称轴交于点F,M为OF中点,N为AF中点,在x轴上是否存在点P,使△PMN的周长最小,若存在,请求出点P的坐标和最小值;若不存在,请说明理由.
题型:不详难度:| 查看答案
对于二次函数y=ax2+bx+c(a≠0),如果当x取任意整数时,函数值y都是整数,此时称该点(x,y)为整点,该函数的图象为整点抛物线(例如:y=x2+2x+2).
(1)请你写出一个二次项系数的绝对值小于1的整点抛物线的解析式______(不必证明);
(2)请直接写出整点抛物线y=x2+2x+2与直线y=4围成的阴影图形中(不包括边界)所含的整点个数有______个.
题型:不详难度:| 查看答案
已知抛物线y=ax2+bx+c与y轴的交点为C,顶点为M,直线CM的解析式y=-x+2并且线段CM的长为2


2

(1)求抛物线的解析式.
(2)设抛物线与x轴有两个交点A(x1,0)、B(x2,0),且点A在B的左侧,求线段AB的长.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.