当前位置:初中试题 > 数学试题 > 二次函数的应用 > 山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克...
题目
题型:不详难度:来源:
山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克.若该专卖店销售这种核桃要想平均每天获利2240元,请回答:
(1)若该专卖店销售这种核桃要想平均每天获利2240元,每千克核桃应降价多少元?
(2)在(1)问的条件下,平均每天获利不变,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?
(3)写出每天总利润y与降价x元的函数关系式,为了使每天的利润最大,应降价多少元?
答案
(1)设每千克核桃应降价x元.
根据题意,得 (60-x-40)(100+
x
2
×20)=2240.
化简,得 x2-10x+24=0 解得x1=4,x2=6.
答:每千克核桃应降价4元或6元.

(2)由(1)可知每千克核桃可降价4元或6元.
因为要尽可能让利于顾客,所以每千克核桃应降价6元.
此时,售价为:60-6=54(元),
54
60
×100%=90%.
答:该店应按原售价的九折出售.

(3)每天总利润y与降价x元的函数关系式为:
y=(60-x-40)(100+
x
2
×20)
=-10x2+100x+2000
=-10(x2-10x)+2000
=-10(x-5)2+2250,
当x=5时,y最大,
故为了使每天的利润最大,应降价5元.
核心考点
试题【山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克】;主要考察你对二次函数的应用等知识点的理解。[详细]
举一反三
如图,Rt△AOB是一张放在平面直角坐标系中的三角形纸片,点O与原点重合,点A在x轴上,点B在y轴上OB=


3
,∠BAO=30°,将Rt△AOB折叠,使OB边落在AB边上,点O与点D重合,折痕为BE.
(1)求点E和点D的坐标;
(2)求经过O、D、A三点的二次函数解析式;
(3)设直线BE与(2)中二次函数图象的对称轴交于点F,M为OF中点,N为AF中点,在x轴上是否存在点P,使△PMN的周长最小,若存在,请求出点P的坐标和最小值;若不存在,请说明理由.
题型:不详难度:| 查看答案
对于二次函数y=ax2+bx+c(a≠0),如果当x取任意整数时,函数值y都是整数,此时称该点(x,y)为整点,该函数的图象为整点抛物线(例如:y=x2+2x+2).
(1)请你写出一个二次项系数的绝对值小于1的整点抛物线的解析式______(不必证明);
(2)请直接写出整点抛物线y=x2+2x+2与直线y=4围成的阴影图形中(不包括边界)所含的整点个数有______个.
题型:不详难度:| 查看答案
已知抛物线y=ax2+bx+c与y轴的交点为C,顶点为M,直线CM的解析式y=-x+2并且线段CM的长为2


2

(1)求抛物线的解析式.
(2)设抛物线与x轴有两个交点A(x1,0)、B(x2,0),且点A在B的左侧,求线段AB的长.
题型:不详难度:| 查看答案
如图,已知抛物线y=-x2+bx+c与一直线相交于A(-1,0),C(2,3)两点,与y轴交于点N.其顶点为D.
(1)抛物线及直线AC的函数关系式;
(2)设点M(3,m),求使MN+MD的值最小时m的值;
(3)若抛物线的对称轴与直线AC相交于点B,E为直线AC上的任意一点,过点E作EFBD交抛物线于点F,以B,D,E,F为顶点的四边形能否为平行四边形?若能,求点E的坐标;若不能,请说明理由;
(4)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值.
题型:不详难度:| 查看答案
如图,在平面直角坐标系中,已知OB=2,点A和点B关于N(0,-2)成中心对称,抛物线y=ax2+bx+c经过点A、O、B三点.
(1)求抛物线的函数表达式;
(2)若点P是x轴上的一动点,从点O出发沿射线OB方向运动,圆P半径为
3


2
4
,速度为每秒1个单位,试求几秒后圆P与直线AB相切;
(3)在此抛物线上,是否存在点P,使得以点P与点O、A、B为顶点的四边形是梯形?若存在,求点P的坐标;若不存在,请说明理由.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.