当前位置:初中试题 > 数学试题 > 二次函数的应用 > 已知二次函数y=-12x2+bx+c的图象经过点A(-3,-6),并与x轴交于点B(-1,0)和点C,顶点为P.(1)求二次函数的解析式;(2)设点M为线段OC...
题目
题型:不详难度:来源:
已知二次函数y=-
1
2
x2+bx+c的图象经过点A(-3,-6),并与x轴交于点B(-1,0)和点C,顶点为P.
(1)求二次函数的解析式;
(2)设点M为线段OC上一点,且∠MPC=∠BAC,求点M的坐标;
说明:若(2)你经历反复探索没有获得解题思路,请你在不改变点M的位置的情况下添加一个条件解答此题,此时(2)最高得分为3分.
答案
把两点代入求解得:
-3b+c+
3
2
=0,
b-c+
1
2
=0,
解得:b=1,c=
3
2

代入原函数解析式得:y=-
1
2
x2+x+
3
2


(2)如图所示:M点在OC上,
由题目可知∠MPC=∠BAC,点P的坐标为(1,2),
由已知个点坐标可以求得:CP=2


2
,AC=6


2
,BC=4,∠PCM=∠ACB=45°;
由以上可以知道△PCM与△ACB相似,
所以有:
PC
CM
=
AC
BC

解得:CM=
4
3
,所以M点的坐标为(
5
3
,0
),
答:M点的坐标为(
5
3
,0
).
核心考点
试题【已知二次函数y=-12x2+bx+c的图象经过点A(-3,-6),并与x轴交于点B(-1,0)和点C,顶点为P.(1)求二次函数的解析式;(2)设点M为线段OC】;主要考察你对二次函数的应用等知识点的理解。[详细]
举一反三
如图,在坐标平面上,抛物线与y轴的交点是(0,5),且经过两个长、宽分别为4和2的相同的长方形的顶点,则这条抛物线对应的函数关系式是______.
题型:不详难度:| 查看答案
如图所示,在平面直角坐标系中,矩形ABOC的边BO在x轴的负半轴上,边OC在y轴的正半轴上,且AB=1,OB=


3
,矩形ABOC绕点O按顺时针方向旋转60°后得到矩形EFOD.点A的对应点为点E,点B的对应点为点F,点C的对应点为点D,抛物线y=ax2+bx+c过点A,E,D.
(1)判断点E是否在y轴上,并说明理由;
(2)求抛物线的函数表达式;
(3)在x轴的上方是否存在点P,点Q,使以点O,B,P,Q为顶点的平行四边形的面积是矩形ABOC面积的2倍,且点P在抛物线上?若存在,请求出点P,点Q的坐标;若不存在,请说明理由.
题型:不详难度:| 查看答案
如图,已知抛物线y=ax2+bx+c(其中b>0,c<0)的顶点P在x轴上,与y轴交于点Q,过坐标原点O,作OA⊥PQ,垂足为A,且OA=


2
,b+ac=3.
(1)求b的值;
(2)求抛物线的解析式.
题型:不详难度:| 查看答案
如图,等腰直角三角形ABC的斜边AB所在的直线上有E,F两点,且∠E+∠F=45°,AE=3,设AB=x,BF=y,则y与x的函数关系式为______.
题型:不详难度:| 查看答案
如图①,在平面直角坐标系中,AB、CD都垂直于x轴,垂足为B、D,且AD与BC相交于E点.已知:A(-2,-6),C(1,-3)
(1)求证:E点在y轴上;
(2)如果AB的位置不变,而DC水平向右移动K(K>0)个单位,此时AD与BC相交于E′点,如图②,求△AE′C的面积S关于K的函数解析式;
(3)过A、E、E′三点的抛物线中,是否存在一条抛物线,它的顶点在x轴上?若存在,请求出k的值;若不存在,说明理由.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.