当前位置:初中试题 > 数学试题 > 二次函数的应用 > 如图,二次函数y=ax2-4x+c的图象经过坐标原点,与x轴交于点A(-4,0).(1)求二次函数的解析式;(2)在抛物线上存在点P,满足S△AOP=8,请直接...
题目
题型:不详难度:来源:
如图,二次函数y=ax2-4x+c的图象经过坐标原点,与x轴交于点A(-4,0).
(1)求二次函数的解析式;
(2)在抛物线上存在点P,满足S△AOP=8,请直接写出点P的坐标.
答案
(1)由已知条件得





c=0
a×(-4)2-4×(-4)+c=0

解得





a=-1
c=0

所以,此二次函数的解析式为y=-x2-4x;

(2)∵点A的坐标为(-4,0),
∴AO=4,
设点P到x轴的距离为h,
则S△AOP=
1
2
×4h=8,
解得h=4,
①当点P在x轴上方时,-x2-4x=4,
解得x=-2,
所以,点P的坐标为(-2,4),
②当点P在x轴下方时,-x2-4x=-4,
解得x1=-2+2


2
,x2=-2-2


2

所以,点P的坐标为(-2+2


2
,-4)或(-2-2


2
,-4),
综上所述,点P的坐标是:(-2,4)、(-2+2


2
,-4)、(-2-2


2
,-4).
核心考点
试题【如图,二次函数y=ax2-4x+c的图象经过坐标原点,与x轴交于点A(-4,0).(1)求二次函数的解析式;(2)在抛物线上存在点P,满足S△AOP=8,请直接】;主要考察你对二次函数的应用等知识点的理解。[详细]
举一反三
如图所示,抛物线y=ax2+c(a>0)经过梯形ABCD的四个顶点,梯形的底AD在x轴上,其中A(-2,0),B(-1,-3).
(1)求抛物线的解析式;
(2)点M为y轴上任意一点,当点M到A,B两点的距离之和为最小时,求此时点M的坐标;
(3)在第(2)问的结论下,抛物线上的点P使S△PAD=4S△ABM成立,求点P的坐标.
题型:不详难度:| 查看答案
已知抛物线y=2x2+bx-2经过点A(1,0).
(1)求b的值;
(2)设P为此抛物线的顶点,B(a,0)(a≠1)为抛物线上的一点,Q是坐标平面内的点,若以A、B、P、Q为顶点的四边形为平行四边形,这样的Q点有几个,并求出PQ的长.
题型:不详难度:| 查看答案
某蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的300天内,西红柿的市场售价与上市时间的关系用图一的一条折线表示;西红柿的种植成本与上市时间的关系用图二的抛物线段表示.

(1)写出图一表示的市场售价与时间的函数关系式P;写出图二表示的种植成本与时间的函数关系式Q;
(2)认定市场售价减去种植成本为纯收益,问何时上市的西红柿纯收益最大?
题型:不详难度:| 查看答案
如图所示,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)经过A(-1,0),B(3,0),C(0,3)三点,其顶点为D,连接BD,点P是线段BD上一个动点(不与B、D重合),过点P作y轴的垂线,垂足为E,连接BE.
(1)求抛物线的解析式,并写出顶点D的坐标;
(2)如果P点的坐标为(x,y),△PBE的面积为s,求s与x的函数关系式,写出自变量x的取值范围,并求出s的最大值;
(3)在(2)的条件下,当s取得最大值时,过点P作x的垂线,垂足为F,连接EF,把△PEF沿直线EF折叠,点P的对应点为P′,请直接写出P′点坐标,并判断点P′是否在该抛物线上.
题型:不详难度:| 查看答案
如图1,抛物线y=-
2
3
x2+bx+c与x轴相交于点A,C,与y轴相交于点B,连接AB,BC,点A的坐标为(2,0),tan∠BAO=2,以线段BC为直径作⊙M交AB与点D,过点B作直线lAC,与抛物线和⊙M的另一个交点分别是E,F.
(1)求该抛物线的函数表达式;
(2)求点C的坐标和线段EF的长;
(3)如图2,连接CD并延长,交直线l于点N,点P,Q为射线NB上的两个动点(点P在点Q的右侧,且不与N重合),线段PQ与EF的长度相等,连接DP,CQ,四边形CDPQ的周长是否有最小值?若有,请求出此时点P的坐标并直接写出四边形CDPQ周长的最小值;若没有,请说明理由.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.