当前位置:初中试题 > 数学试题 > 二次函数的应用 > 如图所示,抛物线y=ax2+c(a>0)经过梯形ABCD的四个顶点,梯形的底AD在x轴上,其中A(-2,0),B(-1,-3).(1)求抛物线的解析式;(2)点...
题目
题型:不详难度:来源:
如图所示,抛物线y=ax2+c(a>0)经过梯形ABCD的四个顶点,梯形的底AD在x轴上,其中A(-2,0),B(-1,-3).
(1)求抛物线的解析式;
(2)点M为y轴上任意一点,当点M到A,B两点的距离之和为最小时,求此时点M的坐标;
(3)在第(2)问的结论下,抛物线上的点P使S△PAD=4S△ABM成立,求点P的坐标.
答案
(1)由题意可得:





4a+c=0
a+c=-3

解得





a=1
c=-4

∴抛物线的解析式为:y=x2-4;

(2)由于A、D关于抛物线的对称轴(即y轴)对称,连接BD.
则BD与y轴的交点即为M点;
设直线BD的解析式为:y=kx+b(k≠0),则有:





-k+b=-3
2k+b=0

解得





k=1
b=-2

∴直线BD的解析式为y=x-2,点M(0,-2);

(3)设BC与y轴的交点为N,则有N(0,-3);
∴MN=1,BN=1,ON=3;
S△ABM=S梯形AONB-S△BMN-S△AOM=
1
2
(1+2)×3-
1
2
×2×2-
1
2
×1×1=2;
∴S△PAD=4S△ABM=8;
由于S△PAD=
1
2
AD•|yP|=8,
即|yP|=4;
当P点纵坐标为4时,x2-4=4,
解得x=±2


2

∴P1(-2


2
,4),P2(2


2
,4);
当P点纵坐标为-4时,x2-4=-4,
解得x=0,
∴P3(0,-4);
故存在符合条件的P点,且P点坐标为:P1(-2


2
,4),P2(2


2
,4),P3(0,-4).
核心考点
试题【如图所示,抛物线y=ax2+c(a>0)经过梯形ABCD的四个顶点,梯形的底AD在x轴上,其中A(-2,0),B(-1,-3).(1)求抛物线的解析式;(2)点】;主要考察你对二次函数的应用等知识点的理解。[详细]
举一反三
已知抛物线y=2x2+bx-2经过点A(1,0).
(1)求b的值;
(2)设P为此抛物线的顶点,B(a,0)(a≠1)为抛物线上的一点,Q是坐标平面内的点,若以A、B、P、Q为顶点的四边形为平行四边形,这样的Q点有几个,并求出PQ的长.
题型:不详难度:| 查看答案
某蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的300天内,西红柿的市场售价与上市时间的关系用图一的一条折线表示;西红柿的种植成本与上市时间的关系用图二的抛物线段表示.

(1)写出图一表示的市场售价与时间的函数关系式P;写出图二表示的种植成本与时间的函数关系式Q;
(2)认定市场售价减去种植成本为纯收益,问何时上市的西红柿纯收益最大?
题型:不详难度:| 查看答案
如图所示,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)经过A(-1,0),B(3,0),C(0,3)三点,其顶点为D,连接BD,点P是线段BD上一个动点(不与B、D重合),过点P作y轴的垂线,垂足为E,连接BE.
(1)求抛物线的解析式,并写出顶点D的坐标;
(2)如果P点的坐标为(x,y),△PBE的面积为s,求s与x的函数关系式,写出自变量x的取值范围,并求出s的最大值;
(3)在(2)的条件下,当s取得最大值时,过点P作x的垂线,垂足为F,连接EF,把△PEF沿直线EF折叠,点P的对应点为P′,请直接写出P′点坐标,并判断点P′是否在该抛物线上.
题型:不详难度:| 查看答案
如图1,抛物线y=-
2
3
x2+bx+c与x轴相交于点A,C,与y轴相交于点B,连接AB,BC,点A的坐标为(2,0),tan∠BAO=2,以线段BC为直径作⊙M交AB与点D,过点B作直线lAC,与抛物线和⊙M的另一个交点分别是E,F.
(1)求该抛物线的函数表达式;
(2)求点C的坐标和线段EF的长;
(3)如图2,连接CD并延长,交直线l于点N,点P,Q为射线NB上的两个动点(点P在点Q的右侧,且不与N重合),线段PQ与EF的长度相等,连接DP,CQ,四边形CDPQ的周长是否有最小值?若有,请求出此时点P的坐标并直接写出四边形CDPQ周长的最小值;若没有,请说明理由.
题型:不详难度:| 查看答案
如图,抛物线y=-x2+bx+c与x轴交于A(1,0),B(-3,0)两点.
(1)求该抛物线的解析式;
(2)设(1)中的抛物线交y轴与C点,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由;
(3)在(1)中的抛物线上的第二象限上是否存在一点P,使△PBC的面积最大?若存在,求出点P的坐标及△PBC的面积最大值;若没有,请说明理由.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.