当前位置:初中试题 > 数学试题 > 二次函数的应用 > 蔬菜基地种植某种蔬菜,由市场行情分析知,1月份至6月份这种蔬菜的上市时间x(月份)与市场售价p(元/千克)的关系如下表:上市时间x(月份)123456市场售价p...
题目
题型:不详难度:来源:
蔬菜基地种植某种蔬菜,由市场行情分析知,1月份至6月份这种蔬菜的上市时间x(月份)与市场售价p(元/千克)的关系如下表:
答案
核心考点
试题【蔬菜基地种植某种蔬菜,由市场行情分析知,1月份至6月份这种蔬菜的上市时间x(月份)与市场售价p(元/千克)的关系如下表:上市时间x(月份)123456市场售价p】;主要考察你对二次函数的应用等知识点的理解。[详细]
举一反三
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.
上市时间x(月份)123456
市场售价p(元/千克)10.597.564.53
由题意
(1)设p=kx+b,
将点(2,9)与(6,3)代入得:





2k+b=9
6k+b=3

解得:





k=-
3
2
b=12

故市场售价p(元/千克)关于上市时间x(月份)的函数关系式为:p=-
3
2
x+12


(2)设y=a(x-6)2+2,
将点(4,3)代入得:4a+2=3,
解得:a=
1
4

故抛物线对应的函数关系式为:y=
1
4
(x-6)2+2=
1
4
x2-3x+11


(3)设收益为M,根据收益=售价-成本,p表示市场售价,y表示成本,
因为p=-
3
2
x+12
y=
1
4
x2-3x+11

M=p-y=-
3
2
x+12-(
1
4
x2-3x+11)=-
1
4
x2+
3
2
x+1

x=-
3
2
2×(-
1
4
)
=3
时,M最大=
4(-
1
4
)×1-(
3
2
)
2
4(-
1
4
)
=
13
4
=3.25

即3月上市出售这种蔬菜每千克收益最大,最大收益为3.25元/千克.
已知直角梯形纸片OABC在平面直角坐标系中的位置如图①所示,四个顶点的坐标分别为O(0,0),A(10,0),B(8,2


3
),C(0,2


3
),点P在线段OA上(不与O、A重合),将纸片折叠,使点A落在射线AB上(记为点A’),折痕PQ与射线AB交于点Q,设OP=x,折叠后纸片重叠部分的面积为y.(图②供探索用)
(1)求∠OAB的度数;
(2)求y与x的函数关系式,并写出对应的x的取值范围;
(3)y存在最大值吗?若存在,求出这个最大值,并求此时x的值;若不存在,说明理由.
如图所示,在平面直角坐标系中,二次函数y=a(x-2)2-1图象的顶点为P,与x轴交点为A、B,与y轴交点为C,连接BP并延长交y轴于点D.
(1)写出点P的坐标;
(2)连接AP,如果△APB为等腰直角三角形,求a的值及点C、D的坐标;
(3)在(2)的条件下,连接BC、AC、AD,点E(0,b)在线段CD(端点C、D除外)上,将△BCD绕点E逆时针方向旋转90°,得到一个新三角形.设该三角形与△ACD重叠部分的面积为S,根据不同情况,分别用含b的代数式表示S,选择其中一种情况给出解答过程,其它情况直接写出结果;判断当b为何值时,重叠部分的面积最大写出最大值.
学校要围一个矩形花圃,花圃的一边利用足够长的墙,另三边用总长为36米的篱笆恰好围成(如图所示).设矩形的一边AB的长为x米(要求AB<AD),矩形ABCD的面积为S平方米.
(1)求S与x之间的函数关系式,并直接写出自变量x的取值范围;
(2)要想使花圃的面积最大,AB边的长应为多少米?
炮弹从炮口射出后,飞行的高度h(m)与飞行的时间t(s)之间的函数关系是h=v0tsinα-5t2,其中v0是炮弹发射的初速度,α是炮弹的发射角,当v0=300(m/s),sinα=
1
2
时,炮弹飞行的最大高度是______m.
用一段长为30m的篱笆围成一个一边靠墙的矩形养鸡场,若墙长18m,这个矩形的长、宽各为多少时,养鸡场的面积最大?最大面积是多少?