当前位置:初中试题 > 数学试题 > 二次函数定义 > 如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(﹣1,0),C(2,3)两点,与y轴交于点N.其顶点为D.(1)抛物线及直线AC的函数关系式;(2)设点M...
题目
题型:不详难度:来源:
如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(﹣1,0),C(2,3)两点,与y轴交于点N.其顶点为D.

(1)抛物线及直线AC的函数关系式;
(2)设点M(3,m),求使MN+MD的值最小时m的值;
(3)若抛物线的对称轴与直线AC相交于点B,E为直线AC上的任意一点,过点E作EF∥BD交抛物线于点F,以B,D,E,F为顶点的四边形能否为平行四边形?若能,求点E的坐标;若不能,请说明理由;
(4)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值.
答案
(1),直线AC的函数关系式为y=x+1(2)(3)(2,3)、(0,1)、。(4)
解析
解:(1)由抛物线y=﹣x2+bx+c过点A(﹣1,0)及C(2,3)得,
,解得。∴抛物线的函数关系式为
设直线AC的函数关系式为y=kx+n,由直线AC过点A(﹣1,0)及C(2,3)得
,解得。∴直线AC的函数关系式为y=x+1。
(2)作N点关于直线x=3的对称点N′,

令x=0,得y=3,即N(0,3)。
∴N′(6, 3)

D(1,4)。
设直线DN′的函数关系式为y=sx+t,则
,解得
∴故直线DN′的函数关系式为
根据轴对称的性质和三角形三边关系,知当M(3,m)在直线DN′上时,MN+MD的值最小,

∴使MN+MD的值最小时m的值为
(3)由(1)、(2)得D(1,4),B(1,2),
①当BD为平行四边形对角线时,由B、C、D、N的坐标知,四边形BCDN是平行四边形,此时,点E与点C重合,即E(2,3)。
②当BD为平行四边形边时,
∵点E在直线AC上,∴设E(x,x+1),则F(x,)。
又∵BD=2
∴若四边形BDEF或BDFE是平行四边形时,BD=EF。
,即
,解得,x=0或x=1(舍去),∴E(0,1)。
,解得,,∴E或E
综上,满足条件的点E为(2,3)、(0,1)、
(4)如图,过点P作PQ⊥x轴交AC于点Q;过点C作CG⊥x轴于点G,

设Q(x,x+1),则P(x,﹣x2+2x+3)。

 


∴当时,△APC的面积取得最大值,最大值为
(1)利用待定系数法求二次函数解析式、一次函数解析式。
(2)根据轴对称的性质和三角形三边关系作N点关于直线x=3的对称点N′,当M(3,m)在直线DN′上时,MN+MD的值最小。
(3)分BD为平行四边形对角线和BD为平行四边形边两种情况讨论。
(4)如图,过点P作PQ⊥x轴交AC于点Q;过点C作CG⊥x轴于点G,设Q(x,x+1),则P(x,﹣x2+2x+3),求得线段PQ=﹣x2+x+2。由图示以及三角形的面积公式知,由二次函数的最值的求法可知△APC的面积的最大值。
核心考点
试题【如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(﹣1,0),C(2,3)两点,与y轴交于点N.其顶点为D.(1)抛物线及直线AC的函数关系式;(2)设点M】;主要考察你对二次函数定义等知识点的理解。[详细]
举一反三
已知直线与x轴和y轴分别交于点A和点B,抛物线的顶点M在直线AB上,且抛物线与直线AB的另一个交点为N.

(1)如图,当点M与点A重合时,求:
①抛物线的解析式;(4分)
②点N的坐标和线段MN的长;(4分)
(2)抛物线在直线AB上平移,是否存在点M,使得△OMN与△AOB相似?若存在,直接写出点M的坐标;若不存在,请说明理由.(4分)
题型:不详难度:| 查看答案
如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A、B两点,与y轴交于点C,点B坐标(﹣1,0),下面的四个结论:①OA=3;②a+b+c<0;③ac>0;④b2﹣4ac>0.其中正确的结论是【   】

A.①④      B.①③      C.②④      D.①②
题型:不详难度:| 查看答案
如图,直线AB交x轴于点B(4,0),交y轴于点A(0,4),直线DM⊥x轴正半轴于点M,交线段AB于点C,DM=6,连接DA,∠DAC=90°.

(1)直接写出直线AB的解析式;
(2)求点D的坐标;
(3)若点P是线段MB上的动点,过点P作x轴的垂线,交AB于点F,交过O、D、B三点的抛物线于点E,连接CE.是否存在点P,使△BPF与△FCE相似?若存在,请求出点P的坐标;若不存在,请说明理由.
题型:不详难度:| 查看答案
把抛物线的图像向右平移3个单位,再向上平移2个单位,所得到的图象的解析式为,则b的值为【   】
A.2B.4C.6D.8

题型:不详难度:| 查看答案
已知:如图一,抛物线与x轴正半轴交于A、B两点,与y轴交于点C,直线经过A、C两点,且AB=2.

(1)求抛物线的解析式;
(2)若直线DE平行于x轴并从C点开始以每秒1个单位的速度沿y轴正方向平移,且分别交y轴、线段BC于点E,D,同时动点P从点B出发,沿BO方向以每秒2个单位速度运动,(如图2);当点P运动到原点O时,直线DE与点P都停止运动,连DP,若点P运动时间为t秒 ;设,当t 为何值时,s有最小值,并求出最小值。
(3)在(2)的条件下,是否存在t的值,使以P、B、D为顶点的三角形与△ABC相似;若存在,求t的值;若不存在,请说明理由。
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.