当前位置:初中试题 > 数学试题 > 二次函数定义 > 已知直线与x轴和y轴分别交于点A和点B,抛物线的顶点M在直线AB上,且抛物线与直线AB的另一个交点为N.(1)如图,当点M与点A重合时,求:①抛物线的解析式;(...
题目
题型:不详难度:来源:
已知直线与x轴和y轴分别交于点A和点B,抛物线的顶点M在直线AB上,且抛物线与直线AB的另一个交点为N.

(1)如图,当点M与点A重合时,求:
①抛物线的解析式;(4分)
②点N的坐标和线段MN的长;(4分)
(2)抛物线在直线AB上平移,是否存在点M,使得△OMN与△AOB相似?若存在,直接写出点M的坐标;若不存在,请说明理由.(4分)
答案
(1)①②N(,-4),(2)存在。点M的坐标为(2,-1)或(4,3)
解析
解:(1)①∵直线与x轴和y轴分别交于点A和点B,∴A(,0),B(0,-5)。
当顶点M与点A重合时,∴M(,0)。
∴抛物线的解析式是:,即
②∵N是直线与在抛物线的交点,
,解得
∴N(,-4)。
如图,过N作NC⊥x轴,垂足为C。

∵N(,-4),∴C(,0)
∴NC=4.MC=OM-OC=

(2)存在。点M的坐标为(2,-1)或(4,3)。
(1)①由直线与x轴和y轴分别交于点A和点B,求出点A、B的坐标,由顶点M与点A重合,根据二次函数的性质求出顶点解析式。
②联立,求出点N的坐标,过N作NC⊥x轴,由勾股定理求出线段MN的长。
(2)存在两种情况,△OMN与△AOB相似:
情况1,∠OMN=900,过M作MD⊥x轴,垂足为D。

设M(m,),则OD= m,DM=
又OA=,OB=5,
则由△OMD∽△BAO得,,即,解得m=2。
∴M(2,-1)。
情况2,

∠ONM=900,若△OMN与△AOB相似,则∠OMN=∠OBN。
∴OM=OB=5。
设M(m,),则解得m=4。
∴M(4,3)。
综上所述,当点M的坐标为(2,-1)或(4,3)时,△OMN与△AOB相似。
核心考点
试题【已知直线与x轴和y轴分别交于点A和点B,抛物线的顶点M在直线AB上,且抛物线与直线AB的另一个交点为N.(1)如图,当点M与点A重合时,求:①抛物线的解析式;(】;主要考察你对二次函数定义等知识点的理解。[详细]
举一反三
如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A、B两点,与y轴交于点C,点B坐标(﹣1,0),下面的四个结论:①OA=3;②a+b+c<0;③ac>0;④b2﹣4ac>0.其中正确的结论是【   】

A.①④      B.①③      C.②④      D.①②
题型:不详难度:| 查看答案
如图,直线AB交x轴于点B(4,0),交y轴于点A(0,4),直线DM⊥x轴正半轴于点M,交线段AB于点C,DM=6,连接DA,∠DAC=90°.

(1)直接写出直线AB的解析式;
(2)求点D的坐标;
(3)若点P是线段MB上的动点,过点P作x轴的垂线,交AB于点F,交过O、D、B三点的抛物线于点E,连接CE.是否存在点P,使△BPF与△FCE相似?若存在,请求出点P的坐标;若不存在,请说明理由.
题型:不详难度:| 查看答案
把抛物线的图像向右平移3个单位,再向上平移2个单位,所得到的图象的解析式为,则b的值为【   】
A.2B.4C.6D.8

题型:不详难度:| 查看答案
已知:如图一,抛物线与x轴正半轴交于A、B两点,与y轴交于点C,直线经过A、C两点,且AB=2.

(1)求抛物线的解析式;
(2)若直线DE平行于x轴并从C点开始以每秒1个单位的速度沿y轴正方向平移,且分别交y轴、线段BC于点E,D,同时动点P从点B出发,沿BO方向以每秒2个单位速度运动,(如图2);当点P运动到原点O时,直线DE与点P都停止运动,连DP,若点P运动时间为t秒 ;设,当t 为何值时,s有最小值,并求出最小值。
(3)在(2)的条件下,是否存在t的值,使以P、B、D为顶点的三角形与△ABC相似;若存在,求t的值;若不存在,请说明理由。
题型:不详难度:| 查看答案
如图为二次函数y=ax2+bx+c(a≠0)的图象,则下列说法:①a>0  ②2a+b=0 ③a+b+c>0 ④当﹣1<x<3时,y>0其中正确的个数为【   】
A.1B.2 C.3D.4

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.