百科
弦切角
弦切角定义
顶点在圆上,一边和圆相交,另一边和圆相切的角叫做弦切角。
弦切角定理
弦切角等于它所夹的弧所对的圆周角。
推论1:弦切角等于它所夹的弧所对的圆心角的一半。
推论2:两个弦切角所夹的弧相等,那么这两个弦切角也相等。
推论3:弦切角等于它所夹的弧的度数的一半。
弦切角定理的证明:
如图2,AB为圆O的切线,因为BD是直径,所以内接三角形BCD是直角三角形,其中∠DCB是直角
所以∠BDC+∠1=90°
又因为∠1 +∠CBA=90°
所以∠CBA=∠BDC.
图2
相关试题
如图:⊙O是等腰三角形ABC的外接圆,AB=AC,延长BC到点D,使CD=AC,连接AD交⊙O于点E,连接BE与AC交于点F,
(1)判断BE是否平分∠ABC,并说明理由;
(2)若AE=6,BE=8,求EF的长。如图,⊙O1与⊙O2相交于A、B两点,过点A作⊙O1的切线交⊙O2于点C,过点B作两圆的割线,分别交⊙O1、⊙O2于点D、E,DE与AC相交于点P.
(1)求证:AD∥EC;
(2)若AD是⊙O2的切线,且PA=6,PC=2,BD=9,求AD的长。(几何证明选讲选做题)已知PA是⊙O的切线,切点为A,直线PO交⊙O于B、C两点,AC=2,∠PAB=120°,则⊙O的面积为______. P在⊙O外,PC切⊙O于C,PAB交⊙O于A、B,则( ) A.∠PCB=∠B B.∠PAC=∠P C.∠PCA=∠B D.∠PAC=∠BCA 如图,PA切圆O于点A,割线PBC经过圆心O,OB=PB=1,OA绕点O逆时针旋转600到OD,则PD的长为( ) A.3 B. C. D. 如图,在⊙O中,AB是弦,AC是⊙O的切线,A是切点,过 B作BD⊥AC于D,BD交⊙O于E点,若AE平分
∠BAD,则∠BAD=( )A.30° B.45° C.50° D.60° 如图,AB是⊙O的直径,点D在AB的延长线上,BD=OB,CD与⊙O切于C,那么∠CAB═______. 如图为△ABC和一圆的重迭情形,此圆与直线BC相切于C点,且与AC交于另一点D.若∠A=70°,∠B=60°,则的度数为何( ) A.50° B.60° C.100° D.120° 如图,圆O的直径AB=6,C为圆周上一点,BC=3,过C作圆的切线l,过A作l的垂线AD,AD分别与直线l、圆交于点D、E.求∠DAC的度数与线段AE的长. 如图,AB是半圆O的直径,C、D是半圆上的两点,半圆O的切线PC交AB的延长线于点P,∠PCB=25°,则∠ADC为( ) A.105° B.115° C.120° D.125° (几何证明选讲选做题)如图,已知四边形ABCD内接于⊙O,且AB为⊙O的直径,直线MN切
⊙O于D,∠MDA=45°,则∠DCB=______.如图,PA、PB、DE分别与⊙O相切,若∠P=40°,则∠DOE等于( )度.