离散型随机变量均值与方差
均值(平均数)
算术平均数
arithmetic mean算术平均数是指在一组数据中所有数据之和再除以数据的个数。它是反映数据集中趋势的一项指标。把n个数的总和除以n,所得的商叫做这n个数的算术平均数。公式:
几何平均数
geometric meann个观察值连乘积的n次方根就是几何平均数。根据资料的条件不同,几何平均数分为加权和不加权之分。公式:
调和平均数
harmonic mean调和平均数是平均数的一种。但统计调和平均数,与数学调和平均数不同。在数学中调和平均数与算术平均数都是独立的自成体系的。计算结果两者不相同且前者恒小于后者。 因而数学调和平均数定义为:数值倒数的平均数的倒数。但统计加权调和平均数则与之不同,它是加权算术平均数的变形,附属于算术平均数,不能单独成立体系。且计算结果与加权算术平均数完全相等。 主要是用来解决在无法掌握总体单位数(频数)的情况下,只有每组的变量值和相应的标志总量,而需要求得平均数的情况下使用的一种数据方法。公式:
加权平均数
weighted average
加权平均数是不同比重数据的平均数,加权平均数就是把原始数据按照合理的比例来计算,若 n个数中,x1出现f1次,x2出现f2次,…,xk出现fk次,那么叫做x1、x2、…、xk的加权平均数。f1、f2、…、fk是x1、x2、…、xk的权。公式:,其中。f1、f2、…、fk叫做权(weight)。平均数是加权平均数的一种特殊情况,即各项的权相等时,加权平均数就是算术平均数。
平方平均数
平方平均数是n个数据的平方的算术平均数的算术平方根。公式:
指数平均数
指标概述指数平均数[EXPMA],其构造原理是对股票收盘价进行算术平均,并根据计算结果来进行分析,用于判断价格未来走势得变动趋势。EXPMA指标是一种趋向类指标,与平滑异同移动平均线[MACD]、平行线差指标[DMA]相比,EXPMA指标由于其计算公式中着重考虑了价格当天 [当期]行情得权重,因此在使用中可克服其他指标信号对于价格走势得滞后性。同时也在一定程度中消除了DMA指标在某些时候对于价格走势所产生得信号提前性,是一个非常有效得分析指标。
中位数
中位数(median)
是刻划平均水平的统计量,设是来自总体的样本,将其从小到大排序为则中位数定义为:n为奇数时,n为偶数时,
方差的定义
设X是一个随机变量,若 存在,则称 为X的方差,记为D(X),Var(X)或DX。即 称为方差,而 称为标准差(或均方差)。它与X有相同的量纲。标准差是用来衡量一组数据的离散程度的统计量 。
方差刻画了随机变量的取值对于其数学期望的离散程度。(标准差、方差越大,离散程度越大。否则,反之)
若X的取值比较集中,则方差D(X)较小,
若X的取值比较分散,则方差D(X)较大。
因此,D(X)是刻画X取值分散程度的一个量,它是衡量取值分散程度的一个尺度。
随机变量的分布列如下图所示 ,则E(5 ξ+4)等于 ξ
0
2
4
P
0.4
0.3
0.3
某柑橘基地因冰雪灾害,使得果林严重受损,为此有关专家提出两种拯救果林的方案,每种方案都需要分两年实施;若实施方案一,预计第一年可以使柑橘产量恢复到灾前的1.0倍、0.9倍、0.8倍的概率分别是0.3、0.3、0.4;第二年可以使柑橘产量为上一年产量的1.25倍、1.0倍的概率分别是0.5、0.5。若实施方案二,预计第一年可以使柑橘产量恢复到灾前的1.2倍、1.0倍、0.8倍的概率分别是0.2、0.3、0.5;第二年可以使柑橘产量为上一年产量的1.2倍、1.0倍的概率分别是0.4、0.6。实施每种方案,第二年与第一年相互独立。令表示方案i 实施两年后柑橘产量达到灾前产量的倍数。
(1)写出的分布列;
(2)实施哪种方案,两年后柑橘产量超过灾前产量的概率更大?
(3)不管哪种方案,如果实施两年后柑橘产量达不到、恰好达到、超过灾前产量,预计利润分别为10万元、15万元、20万元。问实施哪种方案的平均利润更大?某次演唱比赛,需要加试文化科学素质,每位参赛选手需加答3个问题,组委会为每位选手都备有10道不同的题目可供选择,其中有5道文史类题目,3道科技类题目,2道体育类题目,测试时,每位选手从给定的10道题中不放回地随机抽取3次,每次抽取一道题,回答完该题后,再抽取下一道题目作答。
(Ⅰ)求某选手第二次抽到的不是科技类题目的概率;
(Ⅱ)求某选手抽到体育类题目数的分布列和数学期望E。已知某种植物种子每粒成功发芽的概率都为,某植物研究所进行该种子的发芽实验,每次实验种一料种子,每次实验结果相互独立。假定某次实验种子发芽则称该次实验是成功的,如果种子没有发芽,则称该次实验是失败的。若该研究所共进行四次实验,设表示四次实验结束时实验成功的次数与失败的次数之差的绝对值;
(Ⅰ)求随机变量的数学期望E;
(Ⅱ)记“关于x的不等式的解集是实数集R”为事件A,求事件A发生的概率P(A)。设随机变量ξ~B(n,p),且E(ξ)=1.6,D(ξ)=1.28,则( ) A.n=8,p=0.2
B.n=4,p=0.4
C.n=5,p=0.32
D.n=7,p=0.45某突发事件一旦发生将造成400万元的损失。现有甲、乙两种相互独立的预防措施可供采用,单独采用甲措施的费用为45万元,采用甲措施后该突发事件不发生的概率为0.9;单独采用乙措施的费用为30万元,采用乙措施后该突发事件不发生的概率为0.85。若预防方案允许甲、乙两种预防措施单独采用或联合采用,请确定使总费用最少的方案。 若的方差为3,则,,…,的方差为( )。
(参考公式:)设A={(x,y)|1≤x≤6,1≤y≤6,x,y∈N*}。
(1)求从A中任取一个元素是(1,2)的概率;
(2)从A中任取一个元素,求x+y≥10的概率;
(3)设η为随机变量,η=x+y,求Eη。用红、黄、蓝、白、橙五种颜色的鲜花布置如图所示的花圃,要求同一区域上用同一种颜色鲜花,相邻区域使用不同颜色的鲜花。 (1)求恰有两个区域用红色鲜花的概率;
(2)记花圃中红色鲜花区域的块数为ξ,求ξ的分布列及其数学期望。同时抛掷5枚均匀的硬币80次,设5枚硬币正好出现2枚正面向上,3枚反面向上的次数为ξ,则ξ的数学期望是( )。 某次演唱比赛,需要加试文化科学素质,每位参赛选手需加答3个问题,组委会为每位选手都备有10道不同的题目可供选择,其中有5道文史类题目,3道科技类题目,2道体育类题目,测试时,每位选手从给定的10道题中不放回地随机抽取3次,每次抽取一道题,回答完该题后,再抽取下一道题目作答。
(Ⅰ)求某选手第二次抽到的不是科技类题目的概率;
(Ⅱ)求某选手抽到体育类题目数ξ的分布列和数学期望Eξ。有人预测:在2010年的广州亚运会上,排球赛决赛将在中国队与日本队之间展开,据以往统计, 中国队在每局比赛中胜日本队的概率为,比赛采取五局三胜制,即谁先胜三局谁就获胜,并停止比赛。
(1)求中国队以3:1获胜的概率;
(2)设ξ表示比赛的局数,求ξ的期望值。易建联在3月27日蓝网与活塞的比赛中,16投中12,保持此命中率不变,假设在下次比赛中有无限投篮权,那么他第一次投中时投篮次数的期望值为( )
A、
B、1
C、
D、老孙家2010年新买两辆汽车,年初参加某种事故的保险,向保险公司交纳每辆500元的保险金,对在一年内发生此种事故的车辆可一次性赔偿5000元,已知这两辆车一年内发生此种事故的概率分别为,,两车是否发生事故相互独立,求一年内小李家获得赔偿的期望是( ) A、10000元
B、1500元
C、2000元
D、5000元掷一枚质地不均匀的硬币连续掷3次,3次正面均朝上的概率为;
(1)抛掷这样的硬币3次,恰有1次正面向上的概率为多少?
(2)抛掷这样的硬币3次后,再抛掷一枚质地均匀的硬币1次,记四次抛掷后正面朝上的总次数为ξ,求随机变量ξ的分布列及期望Eξ。袋中装有10个大小相同的小球,其中黑球3个,白球n个(4≤n≤6) ,其余均为红球。
(1)从袋中一次任取2个球,如果这2个球颜色相同的概率是,求红球的个数;
(2)在(1)的条件下,从袋中任取2个球,若取一个白球记1分,取一个黑球记2分,取一个红球记3分,用ξ表示取出的两个球的得分的和;
①求随机变量ξ的分布列及期望Eξ;
②记“关于x的ξx2-ξx+1>0不等式的解集是实数集R”为事件A,求事件A发生的概率。若的方差为3,则的方差为( )。 随机变量ξ的分布列如下图所示,其中a,b,c成等差数列,若Eξ=,则Dξ的值是( )。 ξ -1 0 1 P a b c 投到“时尚生活”杂志的稿件,先由两位初审专家进行评审,若能通过两位初审专家的评审,则予以录用;若两位初审专家都未通过,则不予录用;若恰能通过一位初审专家的评审,则再由第三位专家进行复审,若能通过复审专家的评审,则予以录用,否则,不予录用。设稿件能通过各初审专家评审的概率均为0.5,复审的稿件能通过评审的概率为0.3,各位专家独立评审。
(1)求投到该杂志的1篇稿件被录用的概率;
(2)若某人投到该杂志3篇稿件,求他被录用稿件篇数X的分布列及期望值;
(3)若每篇稿件都需10元参评费,一旦予以录用则得150元稿酬,求(2)中撰稿人期望获得稿酬多少元?甲、乙、丙三人射击同一目标,各射击一次,已知甲击中目标的概率为,乙与丙击中目标的概率分别为m、n(m>n),每人是否击中目标是相互独立的,记目标被击中的次数为ξ,且ξ的分布列如下表: ξ 0 1 2 3 P a b 某次国际象棋友谊赛在中国队和乌克兰队之间举行,比赛采用积分制,比赛规则规定赢一局得2分,平一局得1分,输一局得0分,根据以往战况,每局中国队赢的概率为,乌克兰队赢的概率为,且每局比赛输赢互不影响。若中国队第n局的得分记为an,令Sn=a1+a2+…+an。
(1)求S3=4的概率;
(2)若规定:当其中一方的积分达到或超过4分时,比赛不再继续,否则,继续进行。设随机变量ξ表示此次比赛共进行的局数,求ξ的分布列及数学期望。某高校的自主招生考试数学试卷共有8道选择题,每个选择题都给了4个选项(其中有且仅有一个是正确的)。评分标准规定:每题只选1项,答对得5分,不答或答错得0分。某考生每道题都给出了答案,已确定有4道题的答案是正确的,而其余的题中,有两道题每题都可判断其中两个选项是错误的,有一道题可以判断其中一个选项是错误的,还有一道题因不理解题意只能乱猜。对于这8道选择题,
试求:
(1)该考生得分为40分的概率;
(2)该考生所得分数ξ的分布列及数学期望Eξ。某超市为促销商品,特举办“购物有奖100%中奖”活动,凡消费者在该超市购物满100元,享受一次摇奖机会,购物满200元,享受两次摇奖机会,以此类推.摇奖机的结构如图所示,将一个半径适当的小球放入如图所示的容器最上方的入口处,小球将自由下落。小球在下落的过程中,将3次遇到黑色障碍物,最后落入A袋或B袋中,落入A袋为一等奖,奖金为20元,落入B袋为二等奖,奖金为10元,已知小球每次遇到黑色障碍物时,向左、右两边下落的概率都是。
(Ⅰ)求:摇奖两次,均获得一等奖的概率;
(Ⅱ)某消费者购物满200元,摇奖后所得奖金为X元,试求X的分布列与期望;
(Ⅲ)若超市同时举行购物八八折让利于消费者活动(打折后不再享受摇奖),某消费者刚好消费200元,请问他是选择摇奖还是选择打折比较划算。“石头、剪刀、布”是一种广泛流传于我国民间的古老游戏,其规则是:用三种不同的手势分别表示石头、剪刀、布;两个玩家同时出示各自手势1次记为1次游戏,“石头”胜“剪刀”,“剪刀”胜“布”,“布”胜“石头”;双方出示的手势相同时,不分胜负。现假设玩家甲、乙双方在游戏时出示三种手势是等可能的.
(Ⅰ)求出在1次游戏中玩家甲胜玩家乙的概率;
(Ⅱ)若玩家甲、乙双方共进行了3次游戏,其中玩家甲胜玩家乙的次数记作随机变量X,求X的分布列及其期望.某校举行环保知识大奖赛,比赛分初赛和决赛两部分,初赛采用选手选一题答一题的方式进行,每位选手最多有5次选题答题的机会,选手累计答对3题或答错3题即终止其初赛的比赛:答对3题者直接进入决赛,答错3题者则被淘汰.已知选手甲答对每个问题的概率相同,并且相互之间没有影响,答题连续两次答错的概率为.
(1)求选手甲可进入决赛的概率;
(2)设选手甲在初赛中答题的个数为ξ,试求ξ的分布列,并求ξ的数学期望.甲乙两人进行乒乓球比赛,约定每局胜者得1分,负者得0分,比赛进行到有一人比对方多2分或打满6局时停止.设甲在每局中获胜的概率为,乙在每局中获胜的概率为,且各局胜负相互独立,求比赛停止时已打局数ξ的期望Eξ。 某公司为庆祝元旦举办了一次抽奖活动,现场准备的抽奖箱里放置了分别标有数字1 000,800,600,0的四个球(球的大小相同)。参与者随机从抽奖箱里摸取一球(取后即放回),公司即赠送与此球上所标数字等额的奖金(元),并规定摸到标有数字0的球时可以再摸一次,但是所得奖金减半(若再摸到标有数字0的球就没有第三次摸球机会),求一个参与抽奖活动的人可得奖金的期望值是多少元. 甲、乙、丙三台机床各自独立的加工同一种零件,已知甲、乙、丙三台机床加工的零件是一等品的概率分别为0.7,0.6,0.8,乙、丙两台机床加工的零件数相等,甲机床加工的零件数是乙机床加工的零件数的二倍。
(Ⅰ)从甲、乙、丙加工的零件中各取一件检验,求至少有一件一等品的概率;
(Ⅱ)将三台机床加工的零件混合到一起,从中任意的抽取一件检验,求它是一等品的概率;
(Ⅲ)将三台机床加工的零件混合到一起,从中任意的抽取4件检验,其中一等品的个数记为X,求EX。口袋中有1个红球、2个黄球、3个白球、3个黑球共9个球,从中任取3个球.
(Ⅰ)求取出的球的颜色不全相同的概率;
(Ⅱ)记ξ为取出的球的颜色的种数,求随机变量ξ的分布列及其数学期望Eξ.某班50名学生在一次百米测试中,成绩全部介于13秒与18秒之间。将测试结果按如下方式分成五组:第一组[13,14);第二组[14,15)……第五组[17,18],下图是按上述分组方法得到的频率分布直方图.
(Ⅰ)估计该班百米测试成绩的平均数;
(II)若成绩大于或等于14秒且小于16秒认为良好,从该班选出两名同学,求这两名同学百米测试成绩为良好的人数ξ的数学期望;
(Ⅲ)若从第一组和第五组的所有学生中随机抽取两名同学,记m,n表示这两位同学的百米测试成绩,求事件“|m-n|>1”的概率。某工厂生产一种零件,该零件有甲、乙两项技术指标需要检验,设两项技术指标检验互不影响,经研究甲项指标达标率为,乙项指标达标率为。规定:两项指标都达标的零件为一等品,其中一项指标不达标为二等品,两项均不达标的为次品。已知生产一个一等品、二等品的利润分别为500元、200元,出现一个次品亏损400元,
(Ⅰ)求生产一个零件的平均利润;
(Ⅱ)若该工厂某时段生产了5个零件,记该5个零件中一等品的个数为X,求P(X≥2)及E(X),D(X).某投资公司在2010年年初准备将1 000万元投资到“低碳”项目上,现有两个项目供选择:
项目一:新能源汽车,据市场调研,投资到该项目上,到年底可获利30%,也可能亏损15%,且这两种情况发生的概率分别为和;
项目二:通信设备,据市场调研,投资到该项目上,到年底可能获利50%,可能亏损30%,也可能不赔不赚,且这三种情况发生的概率分别为和。
(Ⅰ)针对以上两个投资项目,请你为投资公司选择一个合理的项目,并说明理由;
(Ⅱ)若市场预期不变,该投资公司按照你选择的项目长期投资(每一年的利润和本金继续用作投资),问大约在哪一年的年底总资产(利润+本金)可以翻一番?
(参考数据,lg2=0.301 0,lg3=0.477 1)马老师从课本上抄录一个随机变量的概率分布律如下表: x 1 2 3 P(ε=x) ? ! ? 某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历,假定该毕业生得到甲公司面试的概率为,得到乙公司面试的概率为p,且三个公司是否让其面试是相互独立的。记X为该毕业生得到面试得公司个数。若P(X=0)=,则随机变量X的数学期望E(X)=( )。 某种种子每粒发芽的概率都为0.9,现播种了1000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X,则X的数学期望为( ) A.100
B.200
C.300
D.400某射手射击所得环数ξ的分布列如下: ξ 7 8 9 10 P x 0.1 0.3 y 某迷宫有三个通道,进入迷宫的每个人都要经过一扇智能门.首次到达此门,系统会随机(即等可能)为你打开一个通道.若是1号通道,则需要1小时走出迷宫;若是2号、3号通道,则分别需要2小时、3小时返回智能门,再次到达智能门时,系统会随机打开一个你未到过的通道,直至走出迷宫为止。令ξ表示走出迷宫所需的时间,
(Ⅰ)求ξ的分布列;
(Ⅱ)求ξ的数学期望。随机变量ξ的概率分布列由下表给出: