题目
题型:黑龙江省模拟题难度:来源:
(Ⅰ)估计该班百米测试成绩的平均数;
(II)若成绩大于或等于14秒且小于16秒认为良好,从该班选出两名同学,求这两名同学百米测试成绩为良好的人数ξ的数学期望;
(Ⅲ)若从第一组和第五组的所有学生中随机抽取两名同学,记m,n表示这两位同学的百米测试成绩,求事件“|m-n|>1”的概率。
答案
所以估计该班百米测试成绩的平均数为15.7秒。
(Ⅱ)由直方图知,成绩在[14,16)内的人数为:50×0.16+50×0.38=27(人),
所以该班成绩良好的人数为27人。
ξ的取值为0,1,2,
,
ξ的分布列为
所以ξ的数学期望为。
(Ⅲ)由直方图知,成绩在[13,14)的人数为50×0.06=3人,分别设为x,y,z;
成绩在[17,18]的人数为50×0.08=4人,分别设为A,B,C,D,
若m,n∈[13,14)时,有xy,xz,yz3种情况;
若m,n∈[17,18]时,有AB,AC,AD,BC,BD,CD6种情况;
若m,n分别在[13,14)和[ 17,18]内时,
共有l2种情况,所以基本事件总数为21种,
事件“|m-n|>l”所包含的基本事件个数有12种,
∴。
核心考点
试题【某班50名学生在一次百米测试中,成绩全部介于13秒与18秒之间。将测试结果按如下方式分成五组:第一组[13,14);第二组[14,15)……第五组[17,18]】;主要考察你对离散型随机变量均值与方差等知识点的理解。[详细]
举一反三
(Ⅰ)求生产一个零件的平均利润;
(Ⅱ)若该工厂某时段生产了5个零件,记该5个零件中一等品的个数为X,求P(X≥2)及E(X),D(X).
项目一:新能源汽车,据市场调研,投资到该项目上,到年底可获利30%,也可能亏损15%,且这两种情况发生的概率分别为和;
项目二:通信设备,据市场调研,投资到该项目上,到年底可能获利50%,可能亏损30%,也可能不赔不赚,且这三种情况发生的概率分别为和。
(Ⅰ)针对以上两个投资项目,请你为投资公司选择一个合理的项目,并说明理由;
(Ⅱ)若市场预期不变,该投资公司按照你选择的项目长期投资(每一年的利润和本金继续用作投资),问大约在哪一年的年底总资产(利润+本金)可以翻一番?
(参考数据,lg2=0.301 0,lg3=0.477 1)