题目
已知圆C:x2+y2-2x+4y-4=0,是否存在斜率为1的直线l,使l被圆C截得的弦长AB为直径的圆过原点,若存在求出直线的方程l,若不存在说明理由.
提问时间:2020-11-04
答案
圆C化成标准方程为(x-1)2+(y+2)2=9,假设存在以AB为直径的圆M,圆心M的坐标为(a,b).
∵CM⊥l,即kCM•kl=
×1=-1
∴b=-a-1
∴直线l的方程为y-b=x-a,即x-y-2a-1=0
∴|CM|2=(
∵CM⊥l,即kCM•kl=
b+2 |
a−1 |
∴b=-a-1
∴直线l的方程为y-b=x-a,即x-y-2a-1=0
∴|CM|2=(
|1+2−2a−1| | |
|