题目
已知:如图 △ABC中,AD是BC边上的中线,AE是高,且AB>AC,(1).若AB=12,BC=10,AC=8,求DE.
(2).求证:AB^2-AC^2=2BC*DE.
快
(2).求证:AB^2-AC^2=2BC*DE.
快
提问时间:2022-01-03
答案
(1)因D是BC的中点,故BD=DC=5
RtΔABE中,由勾股定理得:AE^2=12^2-(5+DE)^2;
RtΔAEC中,同理有:AE^2=8^2-(5-DE)^2;
所以有:12^2-(5+DE)^2=8^2-(5-DE)^2
解得:DE=4.
(2)仍在两个直角三角形中用勾股定理得:
AB^2=AE^2+BE^2
AC^2=AE^2+EC^2
二式相减得:AB^2-AC^2=BE^2-EC^2;
又因为BE=(1/2)BC+DE
EC=(1/2)BC-DE
代入上式整理得:AB^2-AC^2=2BC*DE
RtΔABE中,由勾股定理得:AE^2=12^2-(5+DE)^2;
RtΔAEC中,同理有:AE^2=8^2-(5-DE)^2;
所以有:12^2-(5+DE)^2=8^2-(5-DE)^2
解得:DE=4.
(2)仍在两个直角三角形中用勾股定理得:
AB^2=AE^2+BE^2
AC^2=AE^2+EC^2
二式相减得:AB^2-AC^2=BE^2-EC^2;
又因为BE=(1/2)BC+DE
EC=(1/2)BC-DE
代入上式整理得:AB^2-AC^2=2BC*DE
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点