当前位置: > 探究:平面上有n(n大于等于3)个点,任意三个点不在同一直线上,过任意三个点作三角形,一共能做多少不同的三角形?...
题目
探究:平面上有n(n大于等于3)个点,任意三个点不在同一直线上,过任意三个点作三角形,一共能做多少不同的三角形?
当仅有3个点时,可做()个三角形;当有4个点时,可做()个三角形;当有5个点时,可做()个三角形;……
问:当有n个点时,可做()个三角形?
请写出详细的过程以及思考思路.

提问时间:2020-11-02

答案
这是个组合问题
使用公式 Cn3=n(n-1)(n-2)/3/2
当n=3时 答案是1
当n=4时 答案是4
当n=5时 答案是10
依次类推
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.