当前位置:高中试题 > 数学试题 > 函数的对称性 > 【题文】已知定义域为的函数是奇函数.(1)求的值;(2)判断函数的单调性,并求其值域;(3)解关于的不等式....
题目
题型:难度:来源:
【题文】已知定义域为的函数是奇函数.
(1)求的值;
(2)判断函数的单调性,并求其值域;
(3)解关于的不等式
答案
【答案】(1);(2)上为减函数,函数的值域为;(3).
解析
【解析】
试题分析:(1)因为为奇函数,所以代入中求得:;(2)
(2)根据(1)得到的解析式,再利用求导(或定义法)证明其单调性,进一步求得其值域;(3)因为是奇函数,等价于进一步根据单调性求得不等式的解.
试题解析:(1)因为是奇函数, ,解得:.;经检验,当时,函数是奇函数.(若不检验,则扣1分)
(2)由(1)知
由上式易知上为减函数(此处可用定义或导数法证明函数上是减函数).
由于函数的定义域为,所以,因此,所以,函数的值域为
(3)因是奇函数,从而不等式等价于

是减函数,由上式推得      
解不等式可得.
考点:1.函数的奇偶性;2.函数的单调性及值域;3.解不等式.
核心考点
试题【【题文】已知定义域为的函数是奇函数.(1)求的值;(2)判断函数的单调性,并求其值域;(3)解关于的不等式.】;主要考察你对函数的对称性等知识点的理解。[详细]
举一反三
已知则 ( )
A.B.C.D.

题型:单选题难度:简单| 查看答案
已知有限集.如果中元素满足,就称为“复活集”,给出下列结论:
①集合是“复活集”;
②若,且是“复活集”,则
③若,则不可能是“复活集”;
④若,则“复合集”有且只有一个,且
其中正确的结论是           .(填上你认为所有正确的结论序号).
题型:填空题难度:一般| 查看答案
已知集合.
(1)若= 3,求
(2)若,求实数的取值范围.
题型:填空题难度:一般| 查看答案
已知互异的复数a,b满足ab≠0,集合{a,b}={,},则=      .
题型:填空题难度:简单| 查看答案
若集合且下列四个关系:
;②;③;④有且只有一个是正确的,则符合条件的有序数组的个数是_________.
题型:填空题难度:简单| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.