当前位置:高中试题 > 数学试题 > 函数的相关概念 > 设函数,给出以下四个命题:①当c=0时,有②当b=0,c>0时,方程③函数的图象关于点(0,c)对称 ④当x>0时;函数,。其中正确的命题的序号是_...
题目
题型:不详难度:来源:
设函数,给出以下四个命题:①当c=0时,有②当b=0,c>0时,方程③函数的图象关于点(0,c)对称 ④当x>0时;函数。其中正确的命题的序号是_________。
答案
1.2.3
解析

试题分析::①c=0,f(x)=x|x|+bx,f(-x)=-x|-x|+b(-x)=-f(x),故①正确
②b=0,c>0,f(x)=x|x|+c= x2+c,x≥0
-x2+c,x<0
令f(x)=0可得x=-,故②正确
③设函数y=f(x)上的任意一点M(x,y)关于点(0,c)对称的点N(x′,y′),则x=-x’,y=2c-y’代入y=f(x)可得2c-y′=-x′|-x′|-bx′+c⇒y′=x′|x′|+bx′+c故③正确
④当x>0时;函数,是开口向上的二次函数,那么由于对称轴的正负不定,因此错误,应该是不确定的。故填写1.2.3
点评:解决该试题的关键是熟练的运用函数的奇偶性和对称性来分析和解决问题,另外对于绝对值问题,常常去掉绝对值来分析得到结论。
核心考点
试题【设函数,给出以下四个命题:①当c=0时,有②当b=0,c>0时,方程③函数的图象关于点(0,c)对称 ④当x>0时;函数,。其中正确的命题的序号是_】;主要考察你对函数的相关概念等知识点的理解。[详细]
举一反三
,则为( )
A.B.C.D.

题型:不详难度:| 查看答案
已知f(x)=ax2+bx+c的图象过原点(-1,0),是否存在常数a、b、c,使不等式x≤f(x) ≤对一切实数x均成立?
题型:不详难度:| 查看答案
已知有两个集合A,B,A={x∣-2≤x≤2},B={y∣0≤y≤2}.给出下列四个图形,其中能表示以集合A为定义域,以集合B为值域函数关系的是
题型:不详难度:| 查看答案
若f (lnx)=3x+4,则f (x)的表达式为
A.3lnxB.3lnx+4
C.3exD.3ex+4

题型:不详难度:| 查看答案
(本小题满分12分)
已知f (x)=
(1)求函数f (x)的值域.
(2)若f (t)=3,求t的值.
(3)用单调性定义证明在[2,+∞)上单调递增.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.