当前位置:高中试题 > 数学试题 > 圆锥曲线性质探讨 > 如图,圆O的直径AB的延长线与弦CD的延长线相交于点P,E为圆O上一点,AE=AC,求证:∠PDE=∠POC....
题目
题型:不详难度:来源:
如图,圆O的直径AB的延长线与弦CD的延长线相交于点P,E为圆O上一点,AE=AC,求证:∠PDE=∠POC.

答案
见解析
解析
因为AE=AC,AB为直径,故∠OAC=∠OCA=∠OAE.所以∠POC=∠OAC+∠OCA=∠OAC+∠OAE=∠EAC.又∠EAC=∠PDE,所以∠PDE=∠POC.
核心考点
试题【如图,圆O的直径AB的延长线与弦CD的延长线相交于点P,E为圆O上一点,AE=AC,求证:∠PDE=∠POC.】;主要考察你对圆锥曲线性质探讨等知识点的理解。[详细]
举一反三
如图所示,圆O的两弦AB和CD交于点E,EF∥CB,EF交AD的延长线于点F,FG切圆O于点G.

(1)求证:△DEF∽△EFA;
(2)如果FG=1,求EF的长.
题型:不详难度:| 查看答案
如图,圆O是等腰三角形ABC的外接圆,AB=AC,延长BC到点D,使CD=AC,连结AD交圆O于点E,连结BE与AC交于点F.

(1)判断BE是否平分∠ABC,并说明理由;
(2)若AE=6,BE=8,求EF的长.
题型:不详难度:| 查看答案
如图,在△ABC中,已知CM是∠ACB的平分线,△AMC的外接圆交BC于点N.若AC=AB,求证:BN=2AM.

题型:不详难度:| 查看答案
如图,圆O的直径AB=2,C是圆O外一点,AC交圆O于点E,BC交圆O于点D,已知AC=AB,BC=4,求△ADE的周长.

题型:不详难度:| 查看答案
如图,在△ABC中,∠B=90°,以AB为直径的圆O交AC于D,过点D作圆O的切线交BC于E,AE交圆O于点F.求证:

(1)E是BC的中点;
(2)AD·AC=AE·AF.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.