当前位置:高中试题 > 数学试题 > 合情推理与演译推理 > 通过计算可得下列等式:22-12=2×1+1,32-22=2×2+1,42-32=2×3+1,┅┅,(n+1)2-n2=2×n+1将以上各式分别相加得:(n+1...
题目
题型:不详难度:来源:
通过计算可得下列等式:22-12=2×1+1,32-22=2×2+1,42-32=2×3+1,┅┅,(n+1)2-n2=2×n+1
将以上各式分别相加得:(n+1)2-12=2×(1+2+3+…+n)+n,即:1+2+3+…+n=
n(n+1)
2

类比上述求法:请你求出12+22+32+…+n2的值(要求必须有运算推理过程).
答案
23-13=3×12+3×1+1,
33-23=3×22+3×2+1,
43-33=3×32+3×3+1
┅┅
(n+1)3-n3=3×n2+3×n+1---(6分)
将以上各式分别相加得:
(n+1)3-13=3×(12+22+32+…+n2)+3×(1+2+3…+n)+n
所以:12+22+32+…+n2=
1
3
[(n+1)3-1-n-3
1+n
2
n]
=
1
6
n(n+1)(2n+1)
---------(12分)
核心考点
试题【通过计算可得下列等式:22-12=2×1+1,32-22=2×2+1,42-32=2×3+1,┅┅,(n+1)2-n2=2×n+1将以上各式分别相加得:(n+1】;主要考察你对合情推理与演译推理等知识点的理解。[详细]
举一反三
由“以点(x0,y0)为圆心,r为半径的圆的方程为(x-x02+(y-y02=r2”可以类比推出球的类似属性是______.
题型:不详难度:| 查看答案
已知f(x)=
x
1-x
,设f1(x)=f(x),fn(x)=fn-1[fn-1(x)](n>1,n∈N*),则f3(x)的表达式为______,猜想fn(x)(n∈N*)的表达式为______.
题型:不详难度:| 查看答案
对于命题P:存在一个常数M,使得不等式
a
2a+b
+
b
2b+a
≤M≤
a
a+2b
+
b
b+2a
对任意正数a,b恒成立.
(1)试猜想常数M的值,并予以证明;
(2)类比命题P,某同学猜想了正确命题Q:存在一个常数M,使得不等式
a
3a+b
+
b
3b+c
+
c
3c+a
≤M≤
a
a+3b
+
b
b+3c
+
c
c+3a
对任意正数a,b,c恒成立,观察命题P与命题Q的规律,请猜想与正数a,b,c,d相关的正确命题(不需要证明).
题型:不详难度:| 查看答案
在平面,到一条直线的距离等于定长(为正数)的点的集合是与该直线平行的两条直线.这一结论推广到空间则为:在空间,到一个平面的距离等于定长的点的集合是______.
题型:不详难度:| 查看答案
若函数f(n)=k,其中n∈N,k是π=3.1415926535…的小数点后第n位数字,例如f(2)=4,则f{f…f[f(7)]}(共2007个f)=______.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.