当前位置:高中试题 > 数学试题 > 向量求夹角 > 在四棱锥P-ABCD中,侧面PCD⊥底面ABCD,PD⊥CD,E为PC中点,底面ABCD是直角梯形。AB∥CD,∠ADC=90°,AB=AD=PD=1,CD=2...
题目
题型:陕西省模拟题难度:来源:
在四棱锥P-ABCD中,侧面PCD⊥底面ABCD,PD⊥CD,E为PC中点,底面ABCD是直角梯形。AB∥CD,∠ADC=90°,AB=AD=PD=1,CD=2,
(Ⅰ)求证:BE∥平面APD;
(Ⅱ)求证:BC⊥平面PBD;
(Ⅲ)设Q为侧棱PC上一点,,试确定λ的值,使得二面角Q-BD-P为45°。
答案
解:(1)取的中点,连结
因为中点,
,且
在梯形中,

四边形为平行四边形,
平面
平面
平面
(2)平面平面

平面
∴PD⊥AD,
在直角梯形ABCD中,


又由平面
可得

平面

(3)如图,以D为原点建立空间直角坐标系
D-xyz,

平面的法向量为


设平面的法向量为




注意

核心考点
试题【在四棱锥P-ABCD中,侧面PCD⊥底面ABCD,PD⊥CD,E为PC中点,底面ABCD是直角梯形。AB∥CD,∠ADC=90°,AB=AD=PD=1,CD=2】;主要考察你对向量求夹角等知识点的理解。[详细]
举一反三
如图,梯形ABCD中,AB=BC=1,AD=2,∠CBA=∠BAD=90°,沿对角线AC将△ABC折起,使点B在平面ACD内的射影O恰在AC上,
(Ⅰ)求证:AB⊥平面BCD;
(Ⅱ)求异面直线BC与AD所成的角;
(Ⅲ)求二面角B-AD-C的余弦值。
题型:陕西省模拟题难度:| 查看答案
如图,多面体ABCDS中,面ABCD为矩形,SD⊥AD,且SD⊥AB,AD=1,AB=2,SD=
(1)求证:CD⊥平面ADS;
(2)求AD与SB所成角的余弦值;
(3)求二面角A-SB-D的余弦值。
题型:陕西省模拟题难度:| 查看答案
如图,四边形ABCD是边长为1的正方形,MD⊥平面ABCD,NB⊥平面ABCD,且MD=NB=1,E为BC的中点。
(1)求异面直线NE与AM所成角的余弦值;
(2)在线段AN上是否存在点S,使得ES⊥平面AMN?若存在,求线段AS的长;若不存在,请说明理由。
题型:陕西省模拟题难度:| 查看答案
用平行于棱锥底面的平面去截棱锥,则截面与底面之间的部分叫棱台。
如图,在四棱台ABCD-A1B1C1D1中,下底ABCD是边长为2的正方形,上底A1B1C1D1是边长为1的正方形,侧棱DD1⊥平面ABCD,DD1=2,
(Ⅰ)求证:B1B∥平面D1AC;
(Ⅱ)求平面B1AD1与平面CAD1夹角的余弦值。
题型:陕西省模拟题难度:| 查看答案
已知直三棱柱ABC-A1B1C1的三视图如图所示,且D是BC的中点,
(Ⅰ)求证:A1B∥平面ADC1
(Ⅱ)求二面角C1-AD-C的余弦值;
(Ⅲ)试问线段A1B1上是否存在点E,使AE与DC1成60°角?若存在,确定E点位置,若不存在,说明理由。
题型:湖北省模拟题难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.