当前位置:高中试题 > 数学试题 > 向量与空间位置关系 > 如右图,简单组合体ABCDPE,其底面ABCD为正方形,PD⊥平面ABCD,EC∥PD,且PD=2EC.(1)若N为线段PB的中点,求证:EN⊥平面PDB;(2...
题目
题型:不详难度:来源:
如右图,简单组合体ABCDPE,其底面ABCD为正方形,PD⊥平面ABCD,EC∥PD,且PD=2EC.
(1)若N为线段PB的中点,求证:EN⊥平面PDB;
(2)若,求平面PBE与平面ABCD所成的锐二面角的大小.
答案
(1)见解析;(2)45°.
解析
本试题主要考查了下年垂直的判定和二面角的求解。第一问中
要证线面垂直,利用线面垂直的判定定理可以得到。第二问中,利用,以点D为坐标原点,以AD所在的直线为x轴建立空间直角坐标系为平面PBE的法向量.
为平面ABCD的法向量,利用向量的夹角公式得到结论
解:(1)证法1:连结AC与BD交于点F,连结NF,
∵F为BD的中点,∴NF∥PD且NF=PD.
又EC∥PD,且EC=PD,(2分)
∴NF∥EC,且NF=EC,∴四边形NFCE为平行四边形,
∴NE∥FC.(4分)
∵DB⊥AC,PD⊥平面ABCD,AC⊂面ABCD,∴AC⊥PD.
又PD∩BD=D,∴AC⊥面PBD,∴NE⊥面PDB.(6分)
证法2:以点D为坐标原点,以AD所在的直线为x轴建立空间直角坐标系如图所示:设该简单组合体的底面边长为1,PD=a,

则B(1,1,0),C(0,1,0),P(0,0,a),E(0,1,),N(),
=(,-,0),=(1,1,-a),=(1,1,0).
·×1-×1-a×0=0,
·×1-×1+0×0=0,
∴EN⊥PB,EN⊥DB.
∵PB、DB⊂面PDB,且PB∩DB=B,∴NE⊥面PDB.(6分)
(2)解法1:连结DN,由(1)知NE⊥面PDB,∴DN⊥NE.
,DB=AD,∴PD=DB,∴DN⊥PB,∴为平面PBE的法向量.
设AD=1,则N(),∴=().
为平面ABCD的法向量,=(0,0,),(10分)
设平面PBE与平面ABCD所成的二面角为θ,则cosθ=
∴θ=45°,即平面PBE与平面ABCD所成的锐二面角为45°.(12分)
解法2:延长PE与DC的延长线交于点G,连结GB,
则GB为平面PBE与平面ABCD的交线.(8分)

∵PD=2EC,∴CD=CG=CB,
∴D、B、G在以C为圆心、以BC为半径的圆上,
∴DB⊥BG.(9分)
∵PD⊥平面ABCD,BG⊂面ABCD,
∴PD⊥BG,且PD∩DB=D,∴BG⊥面PDB.
∵PB⊂面PDB,∴BG⊥PB,
∴∠PBD为平面PBE与平面ABCD所成的锐二面角的平面角.(10分)
Rt△PDB中,∵PD=DB,
∴∠PBD=45°,即平面PBE与平面ABCD所成的锐二面角为45°.(12分)
核心考点
试题【如右图,简单组合体ABCDPE,其底面ABCD为正方形,PD⊥平面ABCD,EC∥PD,且PD=2EC.(1)若N为线段PB的中点,求证:EN⊥平面PDB;(2】;主要考察你对向量与空间位置关系等知识点的理解。[详细]
举一反三
如图,三棱柱中,⊥面
的中点.
(Ⅰ)求证:
  (Ⅱ)求二面角的余弦值;
(Ⅲ)在侧棱上是否存在点,使得
?请证明你的结论.
题型:不详难度:| 查看答案
如图,在三棱锥中,底面
分别在棱上,且
(Ⅰ)求证:平面
(Ⅱ)当的中点时,求与平面所成的角的大小;
题型:不详难度:| 查看答案
如图,为多面体,平面与平面垂直,点在线段上,△OAB,,△,△,△都是正三角形。
(Ⅰ)证明直线
(II)求棱锥F—OBED的体积。
题型:不详难度:| 查看答案
在空间给出下面四个命题(其中为不同的两条直线),为不同的两个平面)




其中正确的命题个数有
A.1个B.2个C.3个D.4个

题型:不详难度:| 查看答案
如图,四棱锥的底面是矩形,,且侧面是正三角形,平面平面

(Ⅰ)求证:
(Ⅱ)在棱上是否存在一点,使得二面角的大小为45°.若存在,试求的值,若不存在,请说明理由.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.