当前位置:高中试题 > 数学试题 > 向量与空间位置关系 > 如图是一个斜三棱柱,已知、平面平面、、,又、分别是、的中点.(1)求证:∥平面; (2)求二面角的大小....
题目
题型:不详难度:来源:
如图是一个斜三棱柱,已知、平面平面,又分别是的中点.

(1)求证:∥平面; (2)求二面角的大小.
答案
(1)详见解析;(2)二面角的大小是.
解析

试题分析:(1)证明线面平行,有两种思路,一是证线面平行,二通过面面平行来证明.在本题中,两种思路比较,可以看出,取AC的中点P,证明平面MPN∥平面是很容易的.

(2)首先作出二面角的平面角. 由于平面平面,所以过C1作BC的垂线,则该垂线垂直于面BCN.因为,∴ , 
从而 ⊥平面.
再过点B作BO⊥CN于O、连,则⊥CN
所以∠是二面角的一个平面角.在中,求出即可∠.
试题解析:(1)取AC的中点P,连MP、NP。易证MP∥、NP∥BC,所以平面MPN∥平面,得MN∥平面                                          4分

(2)设,则
                                        5分
⊥平面                                 6分
过点B作BO⊥CN于O、连,则⊥CN
所以∠是二面角的一个平面角         9分
又易求,得
,即             11分
也即二面角的大小是           12分
核心考点
试题【如图是一个斜三棱柱,已知、平面平面、、,又、分别是、的中点.(1)求证:∥平面; (2)求二面角的大小.】;主要考察你对向量与空间位置关系等知识点的理解。[详细]
举一反三
如图,四棱柱的底面是平行四边形,且底面°,点中点,点中点.

(Ⅰ)求证:平面平面
(Ⅱ)设二面角的大小为,直线与平面所成的角为,求的值.
题型:不详难度:| 查看答案
是两个不重合的平面,给出下列命题:
①若外一条直线内一条直线平行,则
②若内两条相交直线分别平行于内的两条直线 ,则
③设,若内有一条直线垂直于,则
④若直线与平面内的无数条直线垂直,则.
上面的命题中,真命题的序号是 (    )
A.①③B.②④C.①②D.③④

题型:不详难度:| 查看答案
如图,已知在侧棱垂直于底面的三棱柱中,,且,点中点.

(1)求证:平面⊥平面
(2)若直线与平面所成角的正弦值为
求三棱锥的体积.
题型:不详难度:| 查看答案
已知α,β,γ是三个不同的平面,α∩γ=m,β∩γ=n.则(   )
A.若m⊥n,则α⊥βB.若α⊥β,则m⊥n
C.若m∥n,则α∥βD.若α∥β,则m∥n

题型:不详难度:| 查看答案
已知直线⊥平面,直线m平面,有下面四个命题:
⊥m;②∥m;③∥m;④⊥m
其中正确命题序号是        .
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.