当前位置:高中试题 > 数学试题 > 向量与空间位置关系 > 在四棱锥P﹣ABCD中,PA⊥平面ABCD,△ABC是正三角形,AC与BD的交点M恰好是AC中点,又PA=AB=4,∠CDA=120°.(1)求证:BD⊥PC;...
题目
题型:不详难度:来源:
在四棱锥P﹣ABCD中,PA⊥平面ABCD,△ABC是正三角形,AC与BD的交点M恰好是AC中点,又PA=AB=4,∠CDA=120°.

(1)求证:BD⊥PC;
(2)设E为PC的中点,点F在线段AB上,若直线EF∥平面PAD,求AF的长;
(3)求二面角A﹣PC﹣B的余弦值.
答案
(1)证明过程详见解析;(2);(3).
解析

试题分析:本题主要以四棱锥为几何背景考查线线垂直的判定和线面平行垂直的判定以及二面角的求法,可以运用传统几何法,也可以用空间向量法求解,突出考查空间想象能力和计算能力.第一问,先利用正三角形的性质得出垂直,再利用线面垂直的性质得出垂直,利用线面垂直的判定得垂直平面,从而得证;第二问,先利用中位线证出,再根据线面平行的判定定理证明平面,再根据已知条件得面面平行,所以得到,再转化边和角的值求出;第三问,先根据题意,建立空间直角坐标系,得出各个点坐标,计算出平面的法向量和平面的法向量,再利用夹角公式求出余弦值.
试题解析:(1)∵是正三角形,中点,
,即.
又∵平面,∴.
,∴平面.
.
(2)取中点连接平面.
又直线平面
所以平面平面

中点,



,得.
(3)分别以轴,轴,轴建立如图的空间直角坐标系,

为平面的法向量.

设平面的一个法向量为
,即
,得,则平面的一个法向量为
设二面角的大小为,则
所以二面角余弦值为

核心考点
试题【在四棱锥P﹣ABCD中,PA⊥平面ABCD,△ABC是正三角形,AC与BD的交点M恰好是AC中点,又PA=AB=4,∠CDA=120°.(1)求证:BD⊥PC;】;主要考察你对向量与空间位置关系等知识点的理解。[详细]
举一反三
右图为一组合体,其底面为正方形,平面,且

(Ⅰ)求证:平面
(Ⅱ)求四棱锥的体积;
(Ⅲ)求该组合体的表面积.
题型:不详难度:| 查看答案
设m,n是两条不同的直线,是三个不同的平面,给出下列命题:
①若,则
②若,则
③若,则
④若,则
上面命题中,真命题的序号是      (写出所有真命题的序号).
题型:不详难度:| 查看答案
如图的几何体中,平面平面,△为等边三角形,的中点.

(1)求证:平面
(2)求证:平面平面.
题型:不详难度:| 查看答案
已知直线和平面,若,过点且平行于的直线(   )
A.只有一条,不在平面B.有无数条,一定在平面
C.只有一条,且在平面D.有无数条,不一定在平面

题型:不详难度:| 查看答案
如图,正方形所在平面与圆所在的平面相交于,线段为圆的弦,垂直于圆所在的平面,垂足为圆上异于的点,设正方形的边长为,且.

(1)求证:平面平面
(2)若异面直线所成的角为与底面所成角为,二面角所成角为,求证
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.