当前位置:高中试题 > 数学试题 > 平面的法向量 > 在四棱锥P—ABCD中,底面ABCD是一直角梯形,∠BAD=90°,AD∥BC,AB=BC=a,AD=2a,且PA⊥底面ABCD,PD与底面成30°角.(1)若...
题目
题型:不详难度:来源:
在四棱锥PABCD中,底面ABCD是一直角梯形,∠BAD=90°,ADBCAB=BC=aAD=2a,且PA⊥底面ABCDPD与底面成30°角.
(1)若AEPDE为垂足,求证:BEPD
(2)求异面直线AECD所成角的余弦值.
答案
(1)见解析(2)
解析
(1)证明:∵PA⊥平面ABCD,∴PAAB,又ABAD.∴AB⊥平面PAD.又∵AEPD,∴PD⊥平面ABE,故BEPD
(2)解:以A为原点,ABADAP所在直线为坐标轴,建立空间直角坐标系,则点CD的坐标分别为(aa,0),(0,2a,0).
PA⊥平面ABCD,∠PDAPD与底面ABCD所成的角,∴∠PDA=30°.
于是,在Rt△AED中,由AD=2a,得AE=a.过EEFAD,垂足为F,在Rt△AFE中,由AE=a,∠EAF=60°,得AF=EF=a,∴E(0,a
于是,={-aa,0}
的夹角为θ,则由
cosθ=
AECD所成角的余弦值为
评述:第(2)小题中,以向量为工具,利用空间向量坐标及数量积,求两异面直线所成的角是立体几何中的常见问题和处理手段.
核心考点
试题【在四棱锥P—ABCD中,底面ABCD是一直角梯形,∠BAD=90°,AD∥BC,AB=BC=a,AD=2a,且PA⊥底面ABCD,PD与底面成30°角.(1)若】;主要考察你对平面的法向量等知识点的理解。[详细]
举一反三
已知正方体ABCDA1B1C1D1的棱长为2,点E为棱AB的中点,求:
(Ⅰ)D1E与平面BC1D所成角的大小;
(Ⅱ)二面角DBC1C的大小;
(Ⅲ)异面直线B1D1BC1之间的距离.
题型:不详难度:| 查看答案
如图5:正方体ABCD-A1B1C1D1,过线段BD1上一点P(P平面ACB1)作垂直于D1B的平面分别交过D1的三条棱于E、F、G.
(1)求证:平面EFG∥平面A CB1,并判断三角形类型;
(2)若正方体棱长为a,求△EFG的最大面积,并求此时EF与B1C的距离.
题型:不详难度:| 查看答案
正方体的棱长为1,的中点,则是平面的距离是(  )
A.B.C.D.

题型:不详难度:| 查看答案
(本小题满分14分)如图,在四棱锥P-ABCD中,底面ABCD是边长为1的正方形,侧棱PA的长为2,且PAABAD的夹角都等于600PC的中点,设
(1)试用表示出向量
(2)求的长.
题型:不详难度:| 查看答案
(本小题满分15分) 如图,在三棱锥中,,点分别是的中点,底面
(1)求证:平面
(2)当时,求直线与平面所成角的正弦值;
(3)当为何值时,在平面内的射影恰好为的重心.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.