当前位置:高中试题 > 数学试题 > 平面的法向量 > 如图所示,四棱锥SABCD的底面是正方形,每条侧棱的长都是底面边长的倍,P为侧棱SD上的点.(1)求证:AC⊥SD;(2)若SD⊥平面PAC,求二面角PACD的...
题目
题型:不详难度:来源:
如图所示,四棱锥SABCD的底面是正方形,每条侧棱的长都是底面边长的倍,P为侧棱SD上的点.

(1)求证:AC⊥SD;
(2)若SD⊥平面PAC,求二面角PACD的大小;
(3)在(2)的条件下,侧棱SC上是否存在一点E,使得BE∥平面PAC?若存在,求SE∶EC的值;若不存在,试说明理由.
答案
(1)证明详见解析;(2)30°;(3)存在  SE∶EC=2∶1
解析

试题分析:(1)设AC交BD于O,以 分别为S,D,C,
x轴、y轴、z轴的正方向,建立空间直角坐标系,则S,D,C,
求出的坐标,并计算得到·=0,从而AC⊥SD.(2)为平面PAC的一个法向量,
为平面DAC的一个法向量,向量的夹角等于二面角PACD的平面角,根据向量的夹角公式计算出的夹角即可.(3)假设存在一点E使BE∥平面PAC,设=t(0≤t≤1),则=+=+t,因为·=0,可建立关于t的等式,解之即可.
试题解析:(1)证明:连接BD,设AC交BD于O,
由题意知SO⊥平面ABCD,以O为坐标原点,分别为
x轴、y轴、z轴的正方向,建立空间直角坐标系.

设底面边长为a,,则高SO=a.于是S,D,C,
=,=,·=0,故OC⊥SD,从而AC⊥SD.  4分
(2)解:由题设知,平面PAC的一个法向量为=,
平面DAC的一个法向量为=,则cos<,>==,
故所求二面角的大小为30°. 8分
(3)解:在棱SC上存在一点E使BE∥平面PAC.,由(2)知是平面PAC的一个法向量,
=,=,        设=t(0≤t≤1),
=+=+t=,而·=0t=,
即当SE∶EC=2∶1时,BE∥平面PAC.          12分
核心考点
试题【如图所示,四棱锥SABCD的底面是正方形,每条侧棱的长都是底面边长的倍,P为侧棱SD上的点.(1)求证:AC⊥SD;(2)若SD⊥平面PAC,求二面角PACD的】;主要考察你对平面的法向量等知识点的理解。[详细]
举一反三
如图,四棱锥S﹣ABCD的底面为正方形,SD⊥平面ABCD,SD=AD=2,请建立空间直角坐标系解决下列问题.

(1)求证:;(2)求直线与平面所成角的正弦值.
题型:不详难度:| 查看答案
已知在长方体中,点为棱上任意一点,.

(Ⅰ)求证:平面平面
(Ⅱ)若点为棱的中点,点为棱的中点,求二面角的余弦值.
题型:不详难度:| 查看答案
如图,平面平面,四边形是正方形,四边形是矩形,且的中点,则与平面所成角的正弦值为(   )
A.B.C.D.

题型:不详难度:| 查看答案
如图,在四棱锥中,底面是边长为的菱形,,底面, ,的中点,的中点.

(Ⅰ)证明:直线平面
(Ⅱ)求异面直线所成角的大小;
题型:不详难度:| 查看答案
如图,四棱锥的底面是正方形,平面上的点,且.

(1)证明:
(2)若,求二面角的余弦值.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.