当前位置:高中试题 > 数学试题 > 平面的法向量 > 如图所示,正方体ABCD-A1B1C1D1的棱长为a,M、N分别为A1B和AC上的点,A1M=AN=a,则MN与平面BB1C1C的位置关系是________....
题目
题型:不详难度:来源:
如图所示,正方体ABCD-A1B1C1D1的棱长为aMN分别为A1BAC上的点,A1MANa,则MN与平面BB1C1C的位置关系是________.
答案
平行
解析
分别以C1B1C1D1C1C所在直线为xyz轴,建立空间直角坐标系,如图所示.

A1MANa
MN,∴.
C1(0,0,0),D1(0,a,0),
=(0,a,0),∴·=0,∴.
是平面BB1C1C的法向量,且MN⊄平面BB1C1C,∴MN∥平面BB1C1C.
核心考点
试题【如图所示,正方体ABCD-A1B1C1D1的棱长为a,M、N分别为A1B和AC上的点,A1M=AN=a,则MN与平面BB1C1C的位置关系是________.】;主要考察你对平面的法向量等知识点的理解。[详细]
举一反三
如图,直三棱柱ABC-A1B1C1中,△ABC是等边三角形,DBC的中点.

(1)求证:A1B∥平面ADC1
(2)若ABBB1=2,求A1D与平面AC1D所成角的正弦值.
题型:不详难度:| 查看答案
如图,四边形ABCD为矩形,PD⊥平面ABCDPDQAQAADPD.

(1)求证:平面PQC⊥平面DCQ
(2)若二面角Q-BP-C的余弦值为-,求的值.
题型:不详难度:| 查看答案
在正三棱柱ABC-A1B1C1中,AB=2,AA1,点DAC的中点,点E在线段AA1上.

(1)当AEEA1=1∶2时,求证DEBC1
(2)是否存在点E,使二面角D-BE-A等于60°,若存在求AE的长;若不存在,请说明理由.
题型:不详难度:| 查看答案
如图,在四棱锥P-ABCD中,平面PAC⊥平面ABCD,且PAACPAAD=2.四边形ABCD满足BCADABADABBC=1.点EF分别为侧棱PBPC上的点,且λ.

(1)求证:EF∥平面PAD.
(2)当λ时,求异面直线BFCD所成角的余弦值;
(3)是否存在实数λ,使得平面AFD⊥平面PCD?若存在,试求出λ的值;若不存在,请说明理由.
题型:不详难度:| 查看答案
在等腰梯形ABCD中,ADBCADBC,∠ABC=60°,NBC的中点,将梯形ABCDAB旋转90°,得到梯形ABCD′(如图).

(1)求证:AC⊥平面ABC′;
(2)求证:CN∥平面ADD′;
(3)求二面角A-CN-C的余弦值.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.