当前位置:高中试题 > 数学试题 > 平面的法向量 > 如图,四棱锥P-ABCD的底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点.(1)证明:PA∥平面BDE;(2)求二面角B-DE-C的余...
题目
题型:不详难度:来源:
如图,四棱锥P-ABCD的底面ABCD是正方形,侧棱PD⊥底面ABCDPDDCEPC的中点.

(1)证明:PA∥平面BDE
(2)求二面角B-DE-C的余弦值.
答案
(1)见解析(2)
解析
(1)连接ACBD于点O,连接OE;在△CPA中,EO分别是边CPCA的中点,∴OEPA,而OE⊂平面BDEPA⊄平面BDE,∴PA∥平面BDE.
(2)如图建立空间直角坐标系,设PDDC=2.

A(2,0,0),P(0,0,2),E(0,1,1),
B(2,2,0),=(0,1,1),=(2,2,0).,
n=(xyz)是平面BDE的一个法向量,则由
y=-1,得n=(1,-1,1),又=(2,0,0)是平面DEC的一个法向量.
∴cos〈n〉=.
故结合图形知二面角B-DE-C的余弦值为
核心考点
试题【如图,四棱锥P-ABCD的底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点.(1)证明:PA∥平面BDE;(2)求二面角B-DE-C的余】;主要考察你对平面的法向量等知识点的理解。[详细]
举一反三
如图,在三棱锥中,,则BC和平面ACD所成角的正弦值为     

题型:不详难度:| 查看答案
如图,四棱锥的底面是直角梯形,,且,顶点在底面内的射影恰好落在的中点上.

(1)求证:
(2)若,求直线所成角的 余弦值;
(3)若平面与平面所成的二面角为,求的值.
题型:不详难度:| 查看答案
如图所示,在棱长为2的正方体ABCDA1B1C1D1中,O是底面ABCD的中心,EF分别是CC1AD的中点.那么异面直线OEFD1所成的角的余弦值等于 (  ).
A.B.C.D.

题型:不详难度:| 查看答案
已知三棱柱ABCA1B1C1的侧棱与底面边长都相等,A1在底面ABC内的射影为△ABC的中心,则AB1与底面ABC所成角的正弦值等于(  ).
A.B.C.D.

题型:不详难度:| 查看答案
如图所示,在直三棱柱ABCA1B1C1中,底面是∠ABC为直角的等腰直角三角形,AC=2aBB1=3aDA1C1的中点,点F在线段AA1上,当AF=________时,CF⊥平面B1DF.

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.