当前位置:高中试题 > 数学试题 > 空间向量的基本概念 > 如图,在直三棱柱ABC-A1B1C1中,D,E分别是AB,BB1的中点,AA1=AC=CB=AB. (1)证明:BC1∥平面A1CD;(2)求二面角D-A1C-...
题目
题型:不详难度:来源:
如图,在直三棱柱ABCA1B1C1中,DE分别是ABBB1的中点,AA1ACCBAB.
 
(1)证明:BC1∥平面A1CD
(2)求二面角DA1CE的正弦值.
答案
(1)见解析(2)
解析
(1)连接AC1A1C于点F,则FAC1的中点.
DAB的中点,连接DF,则BC1DF.因为DF⊂平面A1CDBC1⊄平面A1CD,所以BC1∥平面A1CD.
(2)由ACCBAB得,ACBC.以C为坐标原点,的方向为x轴正方向,的方向为y轴正方向,的方向为z轴正方向,建立如图所示的空间直角坐标系Cxyz.设CA=2,则D(1,1,0),E(0,2,1),A1(2,0,2),
=(1,1,0),=(0,2,1),=(2,0,2).
n=(x1y1z1)是平面A1CD的法向量,
可取n=(1,-1,-1).
同理,设m=(x2y2z2)是平面A1CE的法向量,
可取m=(2,1,-2).
从而cos〈nm〉=,故sin〈nm〉=
即二面角DA1CE的正弦值为
核心考点
试题【如图,在直三棱柱ABC-A1B1C1中,D,E分别是AB,BB1的中点,AA1=AC=CB=AB. (1)证明:BC1∥平面A1CD;(2)求二面角D-A1C-】;主要考察你对空间向量的基本概念等知识点的理解。[详细]
举一反三
在三棱锥P-ABC中,PA⊥平面ABC,∠BAC=90°,D,E,F分别是棱AB,BC,CP的中点,AB=AC=1,PA=2,则直线PA与平面DEF所成角的正弦值为________.
题型:不详难度:| 查看答案
如图,是正方形所在平面外一点,且,若分别是的中点.

(1)求证:
(2)求点到平面的距离.
题型:不详难度:| 查看答案
如图,在中,,点在边上,设,过点,作。沿翻折成使平面平面;沿翻折成使平面平面

(1)求证:平面
(2)是否存在正实数,使得二面角的大小为?若存在,求出的值;若不存在,请说明理由.
题型:不详难度:| 查看答案
如图,在平行六面体ABCD-A1B1C1D1中,底面是边长为1的正方形,若∠A1AB=∠A1AD=60º,且A1A=3,则A1C的长为(  )
A.B.C.D.

题型:不详难度:| 查看答案
如图,在长方体AC1中,AB=BC=2,,点E、F分别是面A1C1、面BC1的中心.

(1)求证:BE//平面D1AC;
(2)求证:AF⊥BE;
(3)求异面直线AF与BD所成角的余弦值。
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.