当前位置:高中试题 > 数学试题 > 空间向量的基本概念 > 如图,直角梯形中,,点分别是的中点,点在上,沿将梯形翻折,使平面平面.(1)当最小时,求证:;(2)当时,求二面角平面角的余弦值....
题目
题型:不详难度:来源:
如图,直角梯形中,,点分别是的中点,点上,沿将梯形翻折,使平面平面.

(1)当最小时,求证:;
(2)当时,求二面角平面角的余弦值.
答案
(1)参考解析;(2)
解析

试题分析:(1)因为当最小时,及连结AC与EF的交点即为G点,通过三角形的相似可得到EG的长度.需要证明直线与直线垂直,根据题意建立空间直角坐标系,即可得到相关各点的坐标,从而写出相关向量,即可判断直线的垂直关系.

(2)由题意所给的体积关系可确定点G的位置,求二面角关键是转化为两平面的法向量的夹角,由于平面BCG的法向量易得,关键是求出平面DGB的法向量.通过待定系数法即可求得,还需判断二面角与法向量夹角的大小关系.解法二用到的推理论证的数学思想很重要.
试题解析:(1)证明:∵点分别是的中点,∴EF//BC  
又∠ABC=90°∴AE⊥EF,∵平面AEFD⊥平面EBCF,
∴AE⊥平面EBCF,AE⊥EF,AE⊥BE, 又BE⊥EF,
如图建立空间坐标系E﹣xyz.

翻折前,连结AC交EF于点G,此时点G使得AG+GC最小.
EG=BC=2,又∵EA=EB=2.
则A(0,0,2),B(2,0,0),C(2,4,0), D(0,2,2),E(0,0,0),G(0,2,0),
=(﹣2,2,2),=(-2,-2,0)
=(﹣2,2,2)(-2,-2,0)=0,

(2)解法一:设EG=k,
∥平面,点D到平面EFCB的距离为即为点A到平面EFCB的距离.

[(3- k)+4]×2=7-k
=
=,
,=,
即EG=1
设平面DBG的法向量为,∵G(0,1,0),
(-2,2,2),
,即             
取x=1,则y=2,z=-1,∴
面BCG的一个法向量为
则cos<>=  由于所求二面角D-BF-C的平面角为锐角,
所以此二面角平面角的余弦值为 
(2)解法二:由解法一得EG=1,过点D作DHEF,垂足H,过点H作BG延长线的垂线垂足O,连接OD.

∵平面AEFD⊥平面EBCF, DH平面EBCF,ODOB,所以就是所求的二面角的平面角.由于HG=1,在OHG中,
又DH=2,在DOH中
所以此二面角平面角的余弦值为
核心考点
试题【如图,直角梯形中,,点分别是的中点,点在上,沿将梯形翻折,使平面平面.(1)当最小时,求证:;(2)当时,求二面角平面角的余弦值.】;主要考察你对空间向量的基本概念等知识点的理解。[详细]
举一反三
有下列四个命题:
①(a·b)2=a2·b2;②|a+b|>|a-b|;③|a+b|2=(a+b)2;④若a∥b,则a·b=|a|·|b|.其中真命题的个数是(  )
A.1B.2C.3D.4

题型:不详难度:| 查看答案
如图,在四棱锥S-ABCD中,底面ABCD是直角梯形,AD垂直于AB和DC,侧棱SA底面ABCD,且SA=2,AD=DC=1

(1)若点E在SD上,且证明:平面
(2)若三棱锥S-ABC的体积,求面SAD与面SBC所成二面角的正弦值的大小
题型:不详难度:| 查看答案
由空间向量构成的向量集合,则向量的模的最小值为              .
题型:不详难度:| 查看答案
如图甲,△ABC是边长为6的等边三角形,E,D分别为AB、AC靠近B、C的三等分点,点G为BC边的中点.线段AG交线段ED于F点,将△AED沿ED翻折,使平面AED⊥平面BCDE,连接AB、AC、AG形成如图乙所示的几何体。

(1)求证BC⊥平面AFG;
(2)求二面角B-AE-D的余弦值.
题型:不详难度:| 查看答案
如图,在直三棱柱(侧棱和底面垂直的棱柱)中,,,且满足.

(1)求证:平面侧面
(2)求二面角的平面角的余弦值。
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.