当前位置:高中试题 > 数学试题 > 空间向量的基本概念 > 已知四棱锥的底面为直角梯形,,,底面,且,是的中点.⑴求证:直线平面;⑵⑵若直线与平面所成的角为,求二面角的余弦值....
题目
题型:不详难度:来源:
已知四棱锥的底面为直角梯形,底面,且的中点.
⑴求证:直线平面
⑵⑵若直线与平面所成的角为,求二面角的余弦值.
答案
⑴见解析;⑵1
解析

试题分析:方法一:几何法证明求角.
⑴要证直线平面,需要在平面内找到一条与平行的直线.显然不容易找到;故考虑利用面面平行退出线面平行, 取的中点,构造平面,根据 ,可证.
⑵要求二面角,方法一:找到二面角的平面角,角的顶点在棱,角的两边在两个半平面内中,并且角的两边与棱垂直.取取的中点,连接就是所求角.
方法二:建立空间直角坐标系,利用向量证明,求角.
试题解析:
⑴证明:取的中点,则,故平面;
又四边形正方形,∴,故∥平面;
∴平面平面,
平面.
⑵由底面,得底面;
与平面所成的角为;
, ∴都是边长为正三角形,
的中点,则,且 .

为二面角的平面角;在中 

∴二面角的余弦值
方法二:⑴设,因为
∴以A为坐标原点如图建立空间直角坐标系,取的中点
则各点坐标为:;
,∴,∴,∴平面;
⑵由底面,得与平面所成角的大小为;
,∴,;
的中点,则因;
,且,∴为二面角的平面角;
;∴二面角的余弦值
核心考点
试题【已知四棱锥的底面为直角梯形,,,底面,且,是的中点.⑴求证:直线平面;⑵⑵若直线与平面所成的角为,求二面角的余弦值.】;主要考察你对空间向量的基本概念等知识点的理解。[详细]
举一反三
如图,四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,

(1)证明:平面PQC⊥平面DCQ;
(2)求二面角Q—BP—C的余弦值.
题型:不详难度:| 查看答案
在四棱锥中,侧面底面,,底面是直角梯形,,,,

(1)求证:平面;
(2)设为侧棱上一点,,试确定的值,使得二面角
题型:不详难度:| 查看答案
四棱锥P—ABCD的底面是边长为2的菱形,∠DAB=60°,侧棱,M、N两点分别在侧棱PB、PD上,.

(1)求证:PA⊥平面MNC。
(2)求平面NPC与平面MNC的夹角的余弦值.
题型:不详难度:| 查看答案
如图,将边长为2的正方形ABCD沿对角线BD折成一个直二面角,且EA⊥平面ABD,AE=.

(1)若,求证:AB∥平面CDE;
(2)求实数的值,使得二面角AECD的大小为60°.
题型:不详难度:| 查看答案
已知平行四边形ABCD中,AB=6,AD=10,BD=8,E是线段AD的中点.沿直线BD将△BCD翻折成△BCD,使得平面BCD平面ABD.

(1)求证:C"D平面ABD;
(2)求直线BD与平面BEC"所成角的正弦值.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.